Смекни!
smekni.com

Общие требования и свойства трансформаторных масел (стр. 2 из 3)

1.3. Пробой жидких диэлектриков, основные понятия

Пробой – потеря электрической прочности под действием напряжённости электрического поля – может иметь место как в образцах различных диэлектриков и систем изоляции, так и в электроизоляционных системах любого электротехнического устройства – от мощных генераторов и высоковольтных трансформаторов до любого бытового прибора. Сочетание в системах изоляции материалов, разных по электрической прочности, может приводить к серьёзным осложнениям в эксплуатации самых разнообразных электротехнических устройств, особенно высокого напряжения, где изоляция работает в сильных электрических полях и может возникнуть её пробой.

Причины пробоя бывают различными; не существует по этому единой универсальной теории пробоя. В любой изоляции пробой приводит к образованию в ней канала повышенной проводимости, достаточно высокой, чтобы произошло короткое замыкание в данном электротехническом устройстве, создающее аварийную ситуацию, по существу выводящую это устройство из строя. Однако в этом отношении пробой может проявлять себя в разных системах изоляции по – разному. В твёрдой изоляции, как правило, канал пробоя сохраняет высокую проводимость после выключения, приведшего к пробою напряжения, явление протекает необратимо. В жидких и газообразных диэлектриках вследствие высокой подвижности их частиц электрическое сопротивление канала пробоя восстанавливается вызвавшего его напряжения практически мгновенно.

1.4. Особенности пробоя жидких диэлектриков

Пробой жидких диэлектриков может быть вызван разными процессами, определяющимися в основном состоянием жидкости, степенью её дегазации и чистотой. Наиболее часто в жидком диэлектрике встречается влага. Газы, также, как и вода, могут находиться в жидкости в разных состояниях от молекулярного до сравнительно крупных включений – пузырьков. Как и в газах, в жидкостях в неоднородных электрических полях наблюдаются формы пробоя: неполный пробой – корона, искровой и дуговой разряд. Установлено, что развитие пробоя начинается с формирования оптических неоднородностей в межэлектродном пространстве: в местах образования будущих каналов пробоя жидкость становится малопрозрачной. Наиболее чёткие фотографии позволяют обнаружить густое переплетение микроскопических тёмных нитей – развивающийся пробой древовидной формы. Высказываются предположения, что такие оптические неоднородности связаны с образованием в жидкости газовых пузырей, вызванных её разогревом токами эмиссии, автоионизацией молекул и ёмкостными токами. Однако такая гипотеза пока количественно не проанализирована и не приобрела формы теории.

В теории А.Геманта рассматривается пробой жидкого диэлектрика, содержащего влагу в виде эмульсии. Согласно расчётам Геманта под действием электрического поля капельки влаги вытягиваются, приобретая форму эллипсоидов. При достаточно большой напряжённости поля вытянутые эллипсоиды соединяются между собой, в результате чего в образовавшемся при этом канале происходит разряд.

Экспериментально установлено, что при повышении напряжения в жидкости, содержащей растворённый газ, перед пробоем появляются газовые пузырьки. В результате пробивное напряжение таких жидкостей значительно падает с понижением давления или с приближением к температуре кипения, то есть в условиях, облегчающих образование газовых пузырьков. Причины образования газовых пузырьков рассматривались в теориях Н.Эдлера, П.А.Флоренского, Ф.Ф.Волькенштейна. Согласно теории Эдлера, вблизи электрода имеется слой жидкости с повышенным удельным сопротивлением, содержащий микроскопические зародыши газовых пузырьков. При прохождении тока через этот слой в сильном электрическом поле выделяется такое количество тепла, что при некотором напряжении указанный слой нагревается до температуры кипения, происходит интенсивное газовыделение и наступает пробой. В электроизоляционных маслах, температура кипения которых выше температуры разложения (110 – 1200С), появление газовых пузырьков перед пробоем может быть связано не с испарением жидкости, а с химическим разложением под влиянием нагревания. Кроме того, образование пузырьков и их рост могут происходить под действием газового разряда. В этом случае повышается удельный вес, возрастает вязкость масла, увеличивается температура вспышки. Обработка масел воздействием разрядов называется вольтализацией и находит применение в технике.

В работе, выполненной под руководством Я.И.Френкеля, изучался пробой жидких диэлектриков, содержащих металлические частицы. Было установлено, что сначала частицы приобретают положительный заряд, движутся к катоду, покрывая его толстым рыхлым слоем. Приобретая у катода отрицательный заряд, многие из них движутся к аноду, а с течением времени всё пространство между электродами оказывается заполненным агрегатами частиц, образующих мостики. После этого может произойти пробой. После пробоя частицы с электродов осыпаются на дно сосуда, а между электродами наблюдается тонкая нить – мостик из частиц, сопротивление которой составляет около 25 Ом. Мостик сохраняется около часа, а при пропускании тока – и более длительное время.

Изучение пробоя жидких диэлектриков, содержащих влагу, растворённый газ, примеси твёрдых частиц, весьма важно для практики.


2. Общие требования и свойства трансформаторных масел

Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150°С для разных марок.

Наиболее важное свойство трансформаторных масел — стабильность против окисления, т.е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой — 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.

В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).

Международная электротехническая комиссия разработала стандарт (Публикация 296) «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей». Стандарт предусматривает три класса трансформаторных масел:

I — для южных районов (с температурой застывания не выше -30 °С),

II— для северных районов (с температурой застывания не выше -45°С),

III — для арктических районов (с температурой застывания -60 °С).

Буква А в обозначении класса указывает на то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.

Трансформаторные масла работают в сравнительно «мягких» условиях. Температура верхних слоев масла в трансформаторах при кратковременных перегрузках не должна превышать 95 °С. Многие трансформаторы оборудованы пленочными диафрагмами или азотной защитой, изолирующими масло от кислорода воздуха. Образующиеся при окислении некоторые продукты (например, гидроперекиси, мыла металлов) являются сильными промоторами окисления масла. При удалении продуктов окисления срок службы масла увеличивается во много раз. Этой цели служат адсорберы, заполненные силикагелем, подключаемые к трансформаторам при эксплуатации. Срок службы трансформаторных масел в значительной мере зависит также от использования в оборудовании материалов, совместимых с маслом, т. е. не ускоряющих его старение и не содержащих нежелательных примесей. Для высококачественных сортов трансформаторных масел срок службы без замены может составлять 20–25 лет и более.

Перед заполнением электроаппаратов масло подвергают глубокой термовакуумной обработке. Согласно действующему РД 34.45-51.300–97 «Объем и нормы испытаний электрооборудования» концентрация воздуха в масле, заливаемом в трансформаторы с пленочной или азотной защитой, герметичные вводы и герметичные измерительные трансформаторы не должна превышать 0,5 % (при определении методом газовой хроматографии), а содержание воды 0,001 % (мас. доля). В силовые трансформаторы без пленочной защиты и негерметичные вводы допускается заливать масло с содержанием воды 0,0025 % (мас. доля). Содержание механических примесей, определяемое как класс чистоты, не должно быть хуже 11-го для оборудования напряжением до 220 кВ и хуже 9-го для оборудования напряжением выше 220 кВ. При этом показатели пробивного напряжения в зависимости от рабочего напряжения оборудования должны быть равны (кВ):