Смекни!
smekni.com

Явления переноса в твердых телах (стр. 2 из 6)

Уравнение теплопроводностиКоличественно явление теплопроводности во всех телах описывается уравнением Фурье, согласно которому количествотепла dQ, прошедшее за время dt через некоторую площадку s,перпендикулярную направлению распространения тепла,выражается формулой:

(4)

Как следует из формулы (4) К измеряется в системе СИ в единицах Дж/м·с·К.

Величина dT/dl характеризует быстроту изменения температуры в направлении распространения тепла и численно равна изменению температуры тела на единице длины в этом направлении. Она называется градиентом температуры.

Знак минус в уравнении Фурье указывает, что поток тепла направлен в сторону, противоположную градиенту температуры.

Коэффициент К, зависящий от физической природы вещества и его состояния, называется коэффициентом теплопроводности. Физический смысл его можно установить из следующих соображений. Если положить в формуле (4) s = 1; dt = 1; и dT/dl = 1, то dQ = K. Это означает, что коэффициент теплопроводности численно равен количеству тепла, переносимому за 1 секунду через единицу площади, перпендикулярной направлению распространения тепла, если градиент температуры равен единице.

Метод определения коэффициента теплопроводности.

В данной работе для определения коэффициента теплопроводности К используется уравнение Фурье (4). При этом величины dQ/dt, s , dT/dl измеряются опытным путем. Исследуемый материал взят в виде сплошного медного стержня круглого сечения. Для создания потока тепла вдоль стержня его концы помещены в термостаты А и В (рис. 2).

Рис.2

Термостат А представляет собой металлическую коробку цилиндрической формы, в которую впаяны две трубки для входа и выхода водяного пара. Такое же устройство имеет термостат В, через который протекает холодная вода. Расход воды через термостат В поддерживается постоянным с помощью сосуда Д. Это достигается постоянством уровня воды в сосуде Д, для чего он снабжен трубкой Н, служащей для отвода излишков воды. Контроль за уровнем воды в сосуде Д осуществляется с помощью водомерной стеклянной трубки h. Вода, протекающая через термостат В, служит приемником тепла, переносимого через исследуемый стержень от его горячего конца к холодному. Термометры Т1 и Т2 позволяют определить увеличение температуры воды. В точках «а» и «в» исследуемого стержня в специальных углублениях помещаются спаи термопары, соединенной с гальванометром Г и служащей для определения градиента температуры. Стержень помещен в ящик, наполненный пористым веществом лигнином, являющимся хорошим теплоизоляционным материалом. При хорошей изоляции стержня можно пренебречь отдачей тепла через боковую поверхность и считать, что тепло распространяется только вдоль стержня. Через некоторое время после подачи пара в термостат А в стержне устанавливается стационарный процесс переноса тепла, характеризуемый постоянством температуры в каждом сечении стержня. Такое состояние возможно, если через любое поперечное сечение за равные промежутки времени проходит одинаковое количество тепла (dQ/dt = const).

Из уравнения (4) следует, что при этом градиент температуры dT/dl можно считать одинаковым для всех сечений стержня. Поэтому он может быть определен в виде:

(5)

где l – расстояние между двумя сечениями стержня, ΔТ – разность температур в этих сечениях, определяемая по показаниям гальванометра.

Для определения dQ/dt (количества тепла, протекающего через поперечное сечение стержня за 1 секунду) поступают следующим образом. При стационарном процессе переноса тепла:

(6)

За время t теплота Q будет передана воде, протекающей через термостат В. При этом вода нагреется от Т1 до Т2 (см. рис. 3). Если за это же время через термостат В протечет количество воды, масса которой М, то

Или (7)

где с – удельная теплоемкость воды, Т1 и Т2 – показания соответствующих термометров.

Подставляя формулы (5), (6) и (7) в уравнение Фурье (4). Получим формулу для определения К:

(8)

S – площадь поперечного сечения стержня.

1.2. Теплопроводность металла

Наиболее впечатляющим успехом модели Друде в то время, когда она была предложена, явилось объяснение эмпирического закона Видемана и Франца (1853г.). Закон Видемана-Франца утверждает, что соотношение

теплопроводности к электропроводности для большинства металлов прямо пропорционально температуре, причем коэффициент пропорциональности с достаточной точностью одинаков для всех металлов. Эта закономерность видна из таблицы , где приведены измеренные значения теплопроводности и отношение
(называемое числом Лоренца) для некоторых металлов при двух температурах, 273 К и 373К.

Для объяснения этой закономерности в рамках модели Друде предполагают, что основная часть теплового потока в металле переносится электронами проводимости. Это предположение основано на том эмпирическом наблюдении, что металлы проводят тепло гораздо лучше, чем диэлектрики. Поэтому теплопроводность, обусловленная ионами, которые имеются и в металлах, и в диэлектриках, гораздо менее важна по сравнению с теплопроводностью, обусловленной электронами проводимости (присутствующими только в металлах).

Таблица 1

Экспериментальные значения коэффициента теплопроводности и числа Лоренца некоторых металлов
Элемент 273К 373К
χ/σT,10-8Вт ∙Ом/К2
χ/σT, 10-8Вт∙Ом/К2
Li 0.71 2.22 0.73 2.43
Na 1.38 2.12
K 1.0 2.23
Rb 0.6 2.42
Cu 3.85 2.20 3.82 2.29
Ag 4.18 2.31 4.17 2.38
Au 3.1 2.32 3.1 2.36
Be 2.3 2.36 1.7 2.42
Mg 1.5 2.14 1.5 2.25
Nb 0.52 2.90 0.54 2.78
Fe 0.80 2.61 0.73 2.88
Zn 1.13 2.28 1.1 2.30
Cd 1.0 2.49 1.0
Al 2.38 2.14 2.30 2.19
In 0.88 2.58 0.80 2.60
Ti 0.5 2.75 0.45 2.75
Sn 0.64 2.48 0.60 2.54
Pb 0.38 2.64 0.35 2.53
Bi 0.09 3.53 0.08 3.35
Sb 0.18 2.57 0.17 2.69

Чтобы дать определение коэффициента теплопроводности и рассчитать его, рассмотрим металлический стержень, вдоль которого температура медленно меняется. Если бы на концах стержня не было источников, и стоков тепла, поддерживающих градиент температуры, то его горячий конец охлаждался бы, а холодный – нагревался, то есть тепловая энергия текла бы в направлении, противоположном градиенты температуры. Подводя тепло к горячему концу с той же скоростью, с которой оно отсюда уходит, можно добиться установления стационарного состояния с градиентом температуры и постоянным потоком тепловой энергии. Мы определяем плотность потока тепла jq как вектор, параллельный направлению потока тепла и равный по абсолютной величине количеству тепловой энергии, пересекающей за единицу времени единичную площадь, перпендикулярную потоку. Для малых градиентов температуры поток тепла оказывается пропорциональным

(закон Фурье):

где

- коэффициентом теплопроводности. Он положителен, поскольку направление потока тепла противоположно направлению градиента температуры.

1.3. Теплопроводность диэлектриков.

Большинство кинетических свойств металлов не имеет аналогов у диэлектриков. Однако диэлектрики, являясь электрическими изоляторами, все же проводят тепло. Конечно, они проводят не так хорошо, как металлы: верхний конец серебряной ложки, опущенной в кофе, становится горячим гораздо быстрее, чем ручка керамической чашки. Тем не менее с точки зрения модели статистической решетки в диэлектриках вообще не существует механизма, который обеспечивал бы даже небольшой перенос тепла. Действительно, в частично заполненных зонах диэлектриков содержится столь малое число электронов, что их недостаточно для выполнения этой задачи. Теплопроводность диэлектриков обусловлена в первую очередь решеточными степенями свободы.