Смекни!
smekni.com

Халькогеніди свинцю і сполуки на їх основі (стр. 2 из 7)

Рис. 1.2. Т-х- проекція системи Pb-S поблизу сполуки PbS

1 – [14]; 2 – [15]; 3 – [16]; 4 – [17]; 5 – [17].


Склад, що відповідає максимуму на кривій ліквідусу, містить надлишок свинцю в кількості 3×10-4 ат./моль. Сульфід свинцю має вузьку область гомогенності, розчинність надстехіометричного свинцю і сірки в сульфіді свинцю складають близько 3×10-4 ат/моль (973 K).

Р-Т-проекція діаграми стану системи Рb-S подана на рис. 1.3. Лінія трифазової рівноваги обмежує область стійкості твердого сульфіду свинцю. При температурах нижче 1023 K і високих тисках пари сірки трифазова лінія практично співпадає з лінією тиску насиченої пари чистої сірки. 3 боку сірки трифазова лінія досягає максимуму тиску пари сірки – 1,32×105 Па – при 1070 К. При низьких температурах і низьких тисках лінія трифазової рівноваги відповідає тиску пари сірки, який може бути одержаний із тиску пари чистого свинцю за допомогою співвідношення

(1.1)

KPbS є константою рівноваги наступної реакції:

(1.2)

Парціальні тиски пари сірки, що відповідають стехіометричному складу, показані суцільною лінією FG, яка ділить область всередині трифазової петлі на обласпь n-типу (багату свинцем) і р-типу (багату сіркою).

Тиск пари

над сульфідом свинцю, що сублімується конгруентно описується рівнянням [9]
,
(1.3)

а парціальні тиски

і
, що відповідають конгруентній сублімації, рівняннями [19]
(1.4)

На рис. 1.3 показані склади рівного відхилення від стехіометрії в сторону надлишку свинцю і надлишку сірки. Із збільшенням температури лінії однакової концентрації носіїв наближаються до стехіометичної лінії і для достатньо низьких концентрацій носіїв зливаються з нею. Лінія стереометричного складу перетинає петлю трифазової рівноваги при 1350 К.
Ця температура нижче максимальної температури плавлення, яка дорівнює 1400 К [14] і відповідає складу, що містить надлишок свинцю в твердій фазі близько 6×1018 см-3.

Лінія МN на рис. 1.3 відноситься до парціальних тисків сірки

в рівновазі із зразками, що сублімуються конгруентно. Вона визначається із виразу :
,
(1.7)

який виводиться із умови, що характеризує пару стехіометричного складу,

=1/2
і із константи рівноваги реакції (1.2)
. Склад, що сублімується конгруентно, містить надлишок свинцю відносно стехіометричного складу близько 3×10-4 ат/моль при 1173 К і лежить на стороні n-типу. Складу, що випаровується конгруентно, відповідає мінімум на кривій залежності від загального тиску, який складається з парціальних тисків пари сірки і пари свинцю
.

Рис. 1.3. P-Т- проекція системи Pb-S [18]

Pb – температурна залежність тиску чистої сірки в припущенні існування тільки молекул S2; DE –

, що відповідає Р чистого свинцю, розрахована за рівнянням (1.1); QR – температурна залежність тискупари молекул PbS; FG – температурна залежність
для твердої фази стехіометричного складу; MN – лінія
, парціальний тиск
в рівновазі із зразками, що сублімуються конгруентно; С – максимальна точка плавлення PbS; BAFCDE –
, що відповідає лінії трифазової рівноваги.

2 Константи квазіхімічних реакцій утворення власних атомних

дефектів Френкеля у кристалах PbS

2.1 Експеримент

Вихідний сульфід свинцю синтезували сплавленням свинцю (С–000) і сірки (В-5) у вакуумованих кварцових ампулах. Термічний відпал синтезованих кристалів у парах сірки проводився за загальновідомою методикою двотемпературного відпалу, при якому в один кінець кварцової ампули поміщали розплавлені сірку, а в інший – кристали PbS. Парціальний тиск пари сірки задавався температурою його нагріву в одній зоні ампули. Температуру відпалу кристалів PbS задавали іншою зоною. Після відпалу ампули із зразками швидко загартовували у крижаній воді.

Концентрацію носіїв струму в таких зразках визначали на основі холлівських вимірювань при 300 К. Експериментальні результати залежності концентрації носіїв струму у відпалених кристалах PbS від парціального тиску при різних температурах відпалу зображено на рис.2.1[2].

Рис.2.1. Експериментальні ізотерми концентрації носіїв струму кристалів PbS від парціального тиску сірки при різних температурах відпалів [2].

2.2. Квазіхімічний аналіз

Рівноважний стан власних атомних дефектів кристалів PbS при їх термодинамічному відпалі у парі сірки можна описати системою кристалохімічних рівнянь (див. табл.). Тут: S – тверда фаза; V – пара;

,
– атоми у вузлі;
– міжвузловий атоми;
– вакансії; е – електрони, h – дірки; +, – – знак заряду.

У запропонованій моделі (табл.): реакція І відображає утворення пари Френкеля у металевій підґратці; ІІ – перехід сірки з пари в кристал; IІІ – ІV – реакції іонізації утворених дефектів; V – реакція виникнення власної провідності та VI – рівняння електронейтральності у випадку утворення однозарядних дефектів у катіонній підгратці.

Дана система рівнянь дозволяє розрахувати концентрацію дефектів (міжвузлових атомів свинцю

, вакансій свинцю
) чи концентрацію носіїв струму n(p), якщо відомі константи Kа, Kb, Ki, КF,
.
,
(2.1)
,
(2.2)
.
(2.3)

Якщо ж відома з експерименту концентрація носіїв струму, то можна визначити константи рівноваги реакцій утворення власних атомних дефектів.

Таблиця 2.1

Реакції та константи рівноваги К=К0 exp (–DH/kT) утворення атомних дефектів Френкеля у кристалах PbS

Реакція Константа рівноваги К0,
(см –3, Па )

DH,

еВ

I
1.73
II
0.2
III
0.01
IV
0.01
V
0.61
VI

Для визначення констант рівноваги реакцій (ІІI – V) скористалися зонною теорією для невироджених напівпровідників. Константи рівноваги реакцій іонізації дефектів визначали згідно [3] за формулами: