Смекни!
smekni.com

Термодинамическое равновесие гетерогенных плазменных систем с суще (стр. 2 из 6)

, (1.1.7)

где Q – “внутренняя” статистическая сумма.

Поскольку энергия ε0 отсчитывается от общего уровня системы, то, очевидно, разность энергии системы электрон – ион до и после ионизации равна энергии ионизации атома, т.е.

. (1.1.8)

Именно эта разность энергий (потенциал ионизации атома) входит в выражение для отношения статистических сумм (1.1.5).

Внутренние статистические суммы атомов и ионов можно определить следующим образом [5, с.102]:

, (1.1.9)

где квантовые числа l и s определяют орбитальный момент количества движения и спин. При kT<Δε1 (что обычно выполнено для низкотемпературной плазмы(НТП)) члены суммы (1.1.9) очень быстро уменьшаются. При расчетах для атомов в этой сумме можно ограничится двумя членами, для ионов – одним. Электроны внутренней структуры не имеют, поэтому их внутренний статистический вес Q=2, он соответствует двум направлениям спина.

Статистическую сумму, связанную с поступательными степенями свободы, определим, основываясь на квазиклассическом приближении квантовой механики [6, с.198]. Размер шестимерной ячейки, соответствующей одному состоянию, находим из соотношения неопределенности

. (1.1.10)

Найдем число состояний, приходившихся на весь фазовый объем системы, отвечающий интервалу скоростей

,во всем объеме плазмы V:

. (1.1.11)

Подставляя (1.1.11) в выражение для статистической суммы

, получаем

(1.1.12)

Заменяя суммирование по скоростям интегрированием, находим

(1.1.13)

Используя полученное выражение для частиц всех сортов, участвующих в реакции (1.1.1), и учитывая (1.1.8), преобразуем (1.1.5) к виду

(1.1.14)

Эта формула, определяющая константу ионизационного равновесия, называется формулой Саха. По аналогии с предыдущим можно получить цепочку уравнений Саха для последовательности степеней ионизации атома, т.е. для реакций

,

где К – кратность ионизации. При этом в формулах Саха

(1.1.14)

будут фигурировать потенциалы ионизации Ik, которые равны энергии ионизации иона с зарядом Кe. Поскольку значения Ik для К>1 быстро возрастают , в области температур 1000…3000 К, характерной для низкотемпературной плазмы, будет в основном наблюдаться однократная ионизация атомов. Закон сохранения числа частиц и заряда α определенного сорта совместно с цепочкой уравнений Саха (1.1.14') представляет замкнутую систему уравнений, описывающую ионизационное равновесие в газовой плазме.

В качестве примера рассмотрим ионизацию атомов калия в аргоне. При неизменной температуре Т плазмы повышение исходного содержания атомов калия nA приведет к увеличению равновесной плотности электронов в плазме. Поскольку

, в пренебрежении более высокими степенями ионизации атомов калия запишем систему ионизационных уравнений:

(1.1.15)(1.1.15’)(1.1.15’’)

где (1.1.15) – уравнение Саха для однократной ионизации; (1.1.15’) – закон сохранения числа частиц (исходное содержание присадки калия в результате реакций ионизации не меняется); (1.1.15’’) – закон сохранение заряда (концентрация электронов в системе определяется числом ионизованных атомов калия).

Вводя обозначение

(1.1.16)

и используя (1.1.15’) и (1.1.15’’), преобразуем (1.1.15) к виду

. (1.1.17)

Последнее уравнение имеет очевидное решение

, (1.1.18)

которое и определяет однократную ионизацию атомов калия в плазме по Саха.

На рис.1. показаны расчетные зависимости концентрации электронов в НТП, образованной атомами аргона и калия для температур плазмы Т= 1000, 2000, 3000 К, от исходного содержания атомарного калия nA.

Источниками электронов в высокотемпературном электронейтральном газе могут быть и частицы КДФ с малой работой выхода электронов W. В этом случае появляется специфическая плазменная среда – плазмозоль [7], т.е. система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами КДФ + заряженные макрочастицы, обменивающиеся электронами с газовой фазой. Отличительные черты такой системы: возможность приобретения частицами КДФ больших (макроскопических)


зарядов, наличие у макрочастиц собственного объема, сравнимого с размерами микронеоднородностей в системе, фактически всегда наблюдаемая полидисперсность КДФ.

В связи с широким применением гетерогенных плазменных сред в ряде современных областей энергетики(МГД–генераторы на твердом топливе, управление процессом горения [8]) и технологии (высокотемпературные гетерогенные процессы [9], плазменное напыление [10] и др.), описание термоионизации в НТП с КДФ вызывают в настоящее время значительный интерес [11]. Возможность воздействия на ионизацию среды посредством частиц КДФ была доказана в экспериментах по измерению концентрации электронов в плазме углеводородных пламен [12,13].

Система идентичных частиц в буферном газе.

Наиболее простая модель плазмозоля [14] предполагает, что имеется “ансамбль” идентичных сферических частиц КДФ, обменивающихся электронами с химически нейтральным буферным (несущим) газом. Система неограниченна, и температура всех подсистем: газа, КДФ, электронов – постоянна и равна Т. Равновесная реакция ионизации макрочастицы с зарядовым числом

(1.2.1)

как и ранее, описывается методами расчета равновесных химических систем. Поскольку конденсированные частицы (КЧ) в такой модели представляют собой фактически гигантские молекулы, то в константы равновесия реакций (1.2.1) (соответствующие константы Саха) должна войти разность энергии до и после ионизации КЧ. Эта размерность и является потенциалом ионизации m – кратно заряженной частицы КДФ, который в моделях выбирается равным

, (1.2.2)

где W – работа выхода с поверхности вещества частиц; e – заряд электрона; rp – радиус сферической частицы.

Выбор потенциала ионизации частицы КДФ в виде (1.2.2) фактически означает предположение, что электрон, покидающий КЧ, затрачивает энергию, равную работе выхода с поверхности вещества незаряженной частицы, плюс работа, связанная с кулоновским взаимодействием между эмиттирующей КЧ и излучаемым электроном. Она равна кулоновской энергии электрона на поверхности КЧ только для уединенных макрочастиц или для достаточно разреженных систем. Действительно, в этом случае можно пренебречь эффектами объемного заряда и их влиянием на работу по удалению электрона.

На основе идеально-газовых представлений, как и ранее [(1.1.14), (1.1.14’), (1.1.15), (1.1.15’), (1.1.15’’)], получим соотношение для концентраций КЧ:

(1.2.3)

где Qm, Qm-1 – статистический вес соответственно m- и (m-1) – кратно ионизованной частицы КДФ; me – масса электрона; h и k – постоянные Планка и Больцмана.

Обозначив n0 концентрацию нейтральных КЧ в системе, построим цепочку уравнений Саха (1.2.3), считая что для макрочастиц Qm/Qm-1=1. Частицы плазмозоля с положительными зарядами дают последовательность уравнений, которыми определяются все более высокие степени ионизации отдельной КЧ. Таким образом, получаем набор уравнений для процессов термоэмиссии электрона с поверхности идентичных сферических частиц с зарядами qm-1=(m-1)e, где m = 1, 2, 3, …, :

(1.2.4)

В уравнениях (1.2.4) К обозначена константа Саха для процесса термоэмиссии электрона с поверхности незаряженной частицы плазмозоля, т.е. для реакции

. Выражая из m – го уравнения
с помощью
, которое в свою очередь, можно выразить
из (m-1) – го уравнения, и так далее, продолжая этот процесс вплоть до первого уравнения системы (1.2.4), получаем