Смекни!
smekni.com

Основні методи нанесення епітаксіальних шарів напівпровідника (стр. 1 из 6)

Сумськийдержавний університет

Фізико-технічний факультет

Кафедра прикладної фізики

КУРСОВА РОБОТА

з дисципліни

„ТЕХНОЛОГІЧНІ ОСНОВИ ЕЛЕКТРОНІКИ”

Тема роботи: „Основні методи нанесення епітаксіальних шарів напівпровідника”

Суми – 2007


ЗМІСТ

Вступ

1 Фізичні основи процесу епітаксія

2 Автоепітаксія кремнію із газової фази

2.1 Конструкції установок для одержання епітаксійних шарів кремнію

2.2 Механізм осадження кремнію із газової фази

2.3 Легування кремнію при рості епітаксійних плівок

3 Молекулярно-променева епітаксія

3.1 Загальна характеристика молекулярно-променевої епітаксії

3.2 Обладнання для молекулярно-променевої епітаксії

3.3 Підготовка поверхні підкладки

3.3.1 Температури епітаксі

3.4 Легування

3.4.1 Модульоване легування

3.5 Особливості гетероепітаксія кремнію на фосфіді галію

Висновки

Список літератури


ВСТУП

Причиною появи епітаксіальної технології послужила необхідність вдосконалення процесу виготовлення біполярних транзисторів [2].

На початку створення інтегральних мікросхем область колектора формувалася за допомогою базового технологічного процесу термічної дифузії, але при цьому концентрація активної домішки була максимальною на поверхні, і плавно змінювалася до глибини

, приймаючи на дні колектора мінімальне значення [1].

Оскільки струм в транзисторі тече по дну колектора і в горизонтальному напрямку, де відповідно найбільший опір з причини малої кількості активної домішки, то це призводить до того, що на транзисторі розсіюється велика потужність і він сильно нагрівається [3]. З цієї причини свого часу, на основі наукових досліджень, було прийнято рішення використовувати для формування тіла колектора замість термічної дифузії базовий технологічний процес – епітаксію.

Епітаксія - це процес нарощування на кристалічній підкладці атомів впорядкованих в монокристалічну структуру, причому структура нарощуваної плівки повністю повторює кристалічну орієнтацію підкладки [1].

Практичне значення має випадок, коли легована епітаксіальна плівка вирощується на легованій пластині, тобто коли одночасно з атомами кремнію в зростанні кристала беруть участь і атоми легуючого елементу. При різних типах домішки в пластині і у вирощуваній плівці на межі їх розділу утворюється p-n перехід.

Таким чином в эпітаксіально-планарных структурах тонкий эпітаксільний шар (2-10 мкм) містить елементи ІМС, а підкладка товщиною 500 мкм відіграє конструктивну роль [2].


1 ФІЗИЧНІ ОСНОВИ ПРОЦЕСУ ЕПІТАКСІЯ

При газофазній епітаксії атоми кремнію і домішки виділяються на пластині в результаті хімічних реакцій із з'єднань кремнію і легуючого елементу. Для досконалості важливо перш за все, щоб у вирощуванні шарів кристалу брали участь одиночні атоми, а не їх групи (алгомерати), що заздалегідь об'єдналися в газовій фазі. Тому характер хімічних реакцій, повинен бути гетерогенний, тобто виділення атомів кремнію і домішки повинно відбуватися безпосередньо на пластині, а не в газовій фазі. Початкові реагенти повинні бути підібрані так, щоб молекули побічних продуктів реакції при заданій температурі легко десорбувались з поверхні пластини і не забруднювали її. Іншими словами, енергія зв'язку цих молекул з поверхнею пластини повинна бути істотно нижче їх вільній енергії[2].

Рисунок 1 – будова кристалічноїрешітки типу алмазу [10]

Із-за порушення безперервності решітка на поверхні пластини володіє надлишком вільних зв'язків і діє орієнтуючим чином на атоми, що конденсуються з газової фази. Чим з більшим числом атомів решітки вступає в зв'язок конденсований атом, тим більш стійкий стан (велика енергія зв'язку), в який він переходить [2]. Розподіл вільних зв'язків в площині епітаксіального зростання і найбільш вірогідна послідовність добудови решітки атомами залежить від кристалічної будови напівпровідника і кристалографічної орієнтації площини пластини.

Відомо що кремній має кристалічну решітку типу алмазу. Елементарна комірка кремнію є гранецентрованим кубом усередині якого знаходяться чотири атоми, розміщені на відстані а/4 (а – параметр решітки) від найближчих трьох граней куба [3]. Закономірність

Будова кристалічної решітки типу алмазу, добудови решітки визначається тетраедричним характером міжатомних зв'язків: кожен атом оточений чотирма атомами, розташованими на відстані

[3] від нього і пов'язаними з ним ковалентно.

Вірогідність того, що атом займе найвірогідніше орієнтоване положення, що відповідає мінімуму вільної енергії, зростає з підвищенням рухливості атомів, тобто температури пластини. При високій щільності адсорбованих атомів на поверхні пластини рухливість їх знижується внаслідок взаємодії. Звідси витікає, що більш довершену структуру за інших рівних умов можна одержати при невисоких швидкостях росту плівки.

Істотний внесок в недосконалість структури епітаксіального шару вносить поверхня пластини. Дислокації, що виходять на поверхню пластини, успадковуються нарощуваним шаром. Дислокації і дефекти упаковки зароджуються також через те, що на межі розділу пластина-плівка, що росте, є механічні порушення решітки, через забруднення і деформації решітки, що є наслідком відмінності в ступені легування пластини і шару [2].

Дефекти упаковки при цьому здатні розвиватися у міру зростання плівки і “підходити” один до одного. Про досконалість структури епітаксіальної плівки можна судити по фігурах і ямках травлення, які виникають на поверхні контрольного зразка. Щільність дефектів визначається як числом дефектів на 1 см поверхні відносно дефектів упаковки (фігури травлення) і дислокацій (ямки травлення). Оскільки рухливість носіїв заряду залежить від щільності дефектів (при заданій концентрації домішок і температурі), вона також використовується як показник досконалості структури.

Таким чином, основні умови, що забезпечують досконалість структури епітаксіального шару, наступні [2]:

- хімічні реакції виділення атомів кремнію і домішки повинні бути гетерогенними, що виключають утворення агломератів;

- необхідна висока температура пластини і обмежена швидкість осадження атомів, що забезпечує високу рухливість адсорбованих атомів на пластині;

- з поверхні пластини повинні бути усунені механічні пошкодження і різного роду забруднення.

Зародження епітаксіальних частинок. Вивчення процесів зародження епітаксіальних частинок методом електронної мікроскопії показало, що зародки утворюються на дефектних ділянках кристалічних граней. Спочатку вважали, що місцями вибіркового зародження є сходинки на поверхні, в тому числі і мікросходинки. Потім була висунута ідея, що на грані іонного монокристала зародки утворюються на дефектах решітки та їх скупченнях. Ця ідея була повністю підтверджена експериментально [5].

Процес утворення зародків дуже чутливий до наявності дефектів безпосередньо на поверхні кристала або біля поверхні. Поверхневі дефекти, які мають електронний заряд, є ефективними центрами конденсації. Цим можна пояснити орієнтований ріст плівок на тонких аморфних шарах, нанесених безпосередньо на кристалеву підкладку [5].

Механізми епітаксіального росту. Найбільш перспективний теоретичний напрямок вивчення епітаксії пов'язаний з уявленням про дефекти кристалічної будови яквирішального фактору при зародженні та формуванніепітаксіальних плівок. Причому під дефектами розуміються як точкові дефекти, так і дефекти невідповідності решіток на межі їх зрощення. Виходячи зі сказаного, пропонується така класифікація механізмів епітаксіального росту [5]:

а) регулярна, без дефектна епітаксія з пружною компенсацієюневідповідності, яка містить такі види [5]:

- автоепітаксію;

- епітаксію при малій різниці параметрів решіток;

- епітаксію з малою відмінністю симетрії решіток;

б) регулярна, бездислокаційна епітаксія з виникненням спеціальної поверхні розділу, яка містить наступні види:

- спряження з утворенням двійникової межі або дефекту упаковки;

- спряження різних фаз, решітки яких допускають . регулярність спряження;

в) регулярна епітаксія з додатковою компенсацією невідповідності з точковими дефектами, в тому числі [5]:

- ізольованими точковими дефектами;

- ланцюжком точкових дефектів;

- надрешітками вакансій або домішкових атомів;

г) регулярна епітаксія з компенсацією невідповідності з крайовими і гвинтовими дислокаціями невідповідності [5];

д) нерегулярна епітаксія з виникненням розділу з такою ж структурою, як і на межі з великим кутом повороту [5].

У процесі росту епітаксіального шару види епітаксії можуть безперервно змінюватися з переходом із одного її різновиду в інший. Крім того, енергетичний мінімум для одного виду спряження необов'язково повинен збігатися з енергетичним мінімумом для іншого. Так, наприклад, для спряження на точкових дефектах може виявитися вигідною одна орієнтація, а для спряження на дислокаціях – інша [5].


2 АВТОЕПІТАКСІЯ КРЕМНІЮ ІЗ ГАЗОВОЇ ФАЗИ

2.1 Конструкції установок для одержання епітаксійних шарів кремнію

Нарощування шарів кремнію із газової фази реалізується в установках з безперервною подачею суміші через реактор (метод відкритої труби). На рисунку 2 представлена одна з таких установок.

Рисунок 2 – Схема вертикального реактора з індукційним нагрівом [3]

У представленій на рисунку 2 установці для виділення кремнію і легуючої домішки (бору) використовується реакція відновлення, причому джерела кремнію і домішки – рідкі. Пристрій газорозподілу (на схемі не показано) забезпечує подачу газів, необхідних для виконання повного циклу обробки: водню, що виконує роль реагенту, а також газу для транспортування пари SiCl3 і BBr3; хлористого водню для травлення пластин; вуглекислого газу для отримання плівки SiO2 на поверхні епітаксіального шару. Кожний з газів подається з балона по окремій магістралі, що містить фільтр, регулятор тиску, перекриваючий вентиль, манометр, ротаметр (для вимірювання витрат газу) і клапан з електромагнітним управлінням [4]. Основні реагенти в потік газу-носія подаються в основному барботажним методом і випаровуванням з поверхні. При барботуванні газ носій пропускають через рідину для насичення її парами.