Смекни!
smekni.com

Высокотемпературная сверхпроводимость 2 (стр. 6 из 7)

2.2. Атестація плівок по НВЧ втратам.

Величина НВЧ поверхневого імпедансу Zs=Rs+jXs є одною з найважливіших характеристик матеріала провідників полоскових ліній. Основні методи вимірювання поверхневого імпедансу були розроблені раніше при дослідженні НТНП. З відкриттям ВТНП вони отримали подальший розвиток і пов’язані з пошуками шляхів застосування ВТНП в мікроелектроніці НВЧ.

Методики вимірювання поверхневого імпедансу повинні забеспечувати можливість дослідження в широких температурних (4.2 - 300К) і частотних діапазонах. Однак неможливо проводити дослідження поверхневого імпеданса відразу в широкому діапазоні частот без втрат точності. Оскільки основними є резонансні методи, то дослідження проводяться тільки на одній фіксованій резонансній частоті, що забеспечує їх високу точність.

Відомі також нерезонансні методики вимірювання імпедансу надпровідників, які основані на вимірюванні коефіцієнтів проходження і фази електромагнітної хвилі, яка пройшла через досліджувану плівку на діелектричній підкладці. Однак вони не забеспечують необхідну точність результатів.

Резонансні методи [9] визначення поверхневого імпеданса основані на вимірюванні добротності Q і резонансної частоти f0 вимірювального резонатора. При цьому вимірювання Q дають інформацію про активну частину поверхневого імпедансу, а вимірювання f0 - про його реактивну частину. Конструкція вимірювальних резонаторів визначається діапазоном довжин хвиль і геометрією досліджуваного зразка.

В сантиметровому і міліметровому діапазоні хвиль використовується метод об’ємного резонатора. Він, по суті, є універсальним методом вимірювання параметрів речовин в області НВЧ.

Відомо, що власна добротність об’ємного резонатора при заданій геометрії всеціло визначається вибраною коливальною модою і поверхневим опором його стінок. Якщо одну, декілька або всі стінки такого резонатора виконати із ВТНП, то, знаючи структуру поля в резонаторі і його геометрію, по даним вимірювань власної добротності Q0, можна визначити поверхневий опір Rs:

Q0=

(2.2.1.)

де Q0- власна добротність коливань в резонаторі;

-магнітна проникність;

-кругова частота.

При вимірюванні поверхневого опору ВТНП в міліметровому діапазоні використовується циліндричний об’ємний резонатор з модою H011 , так як добротність коливань в ньому в порівнянні з добротністю коливань других типів велика. Це визначається особливістю структури поля, а також відсутністю втрат з аксіальними струмами на границі циліндричної поверхні резонатор-зразок ВТНП.

При розробці методик вимірювання поверхневого опору керамік і плівок ВТНП використовувався прохідний мідний слабозв’язаний резонатор з робочою модою ТЕ011. Другі моди подавлялись спеціальними методами. Як відомо, власна добротність коливань резонатора, виготовленого повністю з одного матеріала, з ТЕ011 модою може бути виражена у вигляді

(2.2.2)

або для резонатора, торцева стінка якого заміщена ВТНП-матеріалом.

(2.2.3)

де Rsm, Rsc - поверхневий опір метала і надпровідника відповідно;

r01=3.832;

a, b - геометричні коефіцієнти, які залежать від форми.

Із виразу (2.2.3) можна отримать

(2.2.4)

де Qm - власна добротність резонатора ,виконаного цілком із нормального метала;

В - коефіцієнт геометрії і частоти резонатора.

Виразимо Rsc із (2.2.4)

(2.2.5)

де Qс - власна добротність резонатора, виконаного із нормального метала, при заміні його робочої поверхні зразком досліджуваного надпровідника.

Таким чином, для вимірювання поверхневого опору зразка ВТНП необхідно спочатку виконати калібровочні вимірювання поверхневого опору міді ( визначити температурний хід Qm i Rsm ), а потім, вимірюючи температрний хід добротності резонатора з зразком ВТНП, визначити величину Rsc.

2.3. Hадпровідні магніти. Розрахунок надпровідних соленоїдів.

Відкриття сплавів з високими критичними полями призвело до створення потужних соленоїдів і магнітів з надпровідними обмотками. Повна відсутність електричного опору відрізняє надпровідні магніти від пристроїв з нормальними обмотками для отримання магнітного поля.

Подібно до постійних магнітів надпровідні магніти є конденсаторами магнітної енергії, але набагато потужнішими. К.к.д. надпровідних магнітів може бути доведений до 100 %, в той час як к.к.д. звичайних магнітів при генерації магнітного поля в неперервному режимі прямує до нуля.

Звільнення від громіздких джерел живлення і систем водяного охолодження робить надпровідні магніти портативними і значно, що також дуже важливо, знижує іх собівартісь.

Надпровідний соленоїд відрізняється від звичайного, по - перше, тим, що електричний опір його обмотки рівний нулю, і, по - друге, тим, що ри де-якому значенні струму, який називається критичним і являється функцією магнітного поля, надпровідність зникає.

Для розрахунку надпровідного соленоїда використовуємо основну формулу соленоїда [19]:

(2.3.1)

Н0 - напруженність магнітного поля в ценрі соленоїда, W - потужність, яка затрачується, l - коефіцієнт заповнення, r - питомий опір, Gi - форм -фактор, величина якого залежить від форми обмотки, у1 - внутрішній радіус обмотки. Для простоти дивимось круглу циліндричну котушку з прямокутним осьовим перерізом ( рис.3.2.1). Введемо фактор

(2.3.2)


Рис.2.3.1. Поперечний переріз обмотки надпровідникового соленоїда.

Об’єм зайнятий надпровідником, рівний V=a13n, а довжина проволоки L=a13n/A, де a1 - внутрішній радіус обмотки, А - площа поперечного перерізу проволоки. З (2.3.1) та (2.3.2) знаходимо

, (2.3.3)

де І=jlA - ефективний струм в надпровідному проводі. Формфактор задається слідуючою формулою

. (2.3.4)

Співвідношення (2.3.3) є аналогом основної формули соленоїда. Також для зручності розрахунків побудовані графіки [ 19 ].

2.2. Опис експерементальної установки.

Блок-схема експерементальної установки представлена на рис.2.2.1. Сигнал з НВЧ-генератора (1) поступає на 2-Т міст (2), частина сигналу з 2-Т моста (2) йде на детектор (3) системи АРП (автоматичне регулювання потужності), причому на один із входів АРП подється продетектований НВЧ сигнал, а з виходу НВЧ-генератора на другий вхід системи АРП подається опорний сигнал, який визначає рівень потужності.

Інша частина сигналу з виходу 2-Т моста (2) подається на направлений відгалуджувач (4) і навантаження (7). З направленого відгалуджувача (4) сигнал поступає на частотомір РЧЗ-72 (5).

Рис 2.1.1. Прохідний мідний резонатор з заміщаємою торцевою стінкою

Основний сигнал з виходу 2-Т моста (2) через поляризаційний атенюатор (7) поступає до кріоблоку ( кріостат ). Крiостат являє собою вiдкачувану вакумну посудину, в якій розташованi два коаксiальнi баки.