Смекни!
smekni.com

Основы химии (стр. 19 из 32)

Рассмотрим металлическую связь с позиций метода молекулярных орбиталей.

Атомы металлов содержат на внешних квантовых уровнях мало электронов и много вакантных орбиталей. При объединении атомов в кристаллическую решетку атомные орбитали металлов объединяются в молекулярные. Число молекулярных орбиталей равняется сумме орбиталей отдельных атомов. Если бы учитывались только s- и р-орбитали внешних уровней, то в этом частном случае при содержании в кристалле числа атомов (только в 1см3N=1022 – 1023 атомов) образуется 4N молекулярных орбитали. В каждом атоме одна s-орбиталь и три р-орбитали, следовательно общее число орбиталей (1+3)N=4N.

При учете d- и f-атомных орбиталей число молекулярных орбиталей увеличивается на (5N+7N), т.е. резко возрастает.

Валентные электроны заполняют молекулярные орбитали металлов в порядке возрастания энергии. Так как молекулярных орбиталей больше, чем валентных электронов, то только часть молекулярных орбиталей занята элктронами, ее называют валентной зоной. Совокупность уровней, расположенных выше валентной зоны, и содержащая валентные орбитали, названа зоной проводимости. Благодаря близости расположения зон (валентной и проводимости) электроны легко переходят с орбиталей валентной зоны на орбитали зоны проводимости осуществляя при этом между атомами металла нелокализованные связи.

4.8. Слабые межмолекулярные взаимодействия.

Наряду с межмолекулярными водородной и донорно – акцепторной связями между молекулами отдельных соединений могут возникать слабые межмолекулярные взаимодействия. Межмолекулярное взаимодействие приводит к тому, что газообразные вещества при соответствующих условиях могут переходить в жидкое и твердое агрегатное состояние.

dD

0

Рис.3.37. Результирующая кривая

межмолекулярного взаимодействия.

Силы притяжения или сцепления между молекулами называют ван–дер–Вальсовыми силами, по имени голландского ученого Ван–дер–Вальса, изучавшего межмолекулярное взаимодействие.

Межмолекулярное взаимодействие зависит прежде всего от расстояния между центрами взаимодействующих молекул. На больших расстояниях ван–дер–вальсовы силы ничтожно малы и начинают проявляться лишь на расстояниях порядка 10А. Если две молекулы приближать друг к другу, то на определенном расстоянии между ними начинают действовать силы притяжения и отталкивания. Соотношение между этими двумя силами можно выразить результирующей кривой (рис.3.37.). Силы притяжения между двумя сближающимися молекулами сначала растут, достигают некоторого максимума, а затем резко уменьшаются в следствии сильного возрастания сил отталкивания. Расстояние между молекулами d0 отвечает равновесному состоянию, когда силы притяжения и отталкивания двух сближающихся молекул уравновешиваются, d0 при этом равно 4–7А. Энергия межмолекулярного взаимодействия невелика и составляет около 8–47 кДж/моль, т.е. в 10–100 раз меньше энергии обычного химического взаимодействия.

Молекулы как валентнонасыщенные частицы не могут образовывать между собой валентных связей. Какова тогда природа ван–дер–Вальсовых сил?

В А

ldl

ldl

Рис.3.38. Ориентационное дипольное

взаимодействие молекул.

ll

Так как молекулы можно разделить на полярные и неполярные, то возможны три типа взаимодействий:

а) между полярными молекулами (дипольное);

б) между полярной и неполярной молекулами (индукционное);

в) между неполярными молекулами (дисперсионное).

Рассмотрим каждый из этих типов взаимодействий.

Диполное взаимодействие (ориентационное) – это взаимодействие двух полярных молекул. Сущность его сводится к тому, что положительный коней одной молекулы А притягивает к себе отрицательный конец другой В. Переориентировка диполей протекает до тех пор, пока притяжение между ними не уравновесится силами отталкивания (рис.3.38.). В результате взаимодействия диполей потенциальная энергия системы уменьшается, это равносильно усилению связи между молекулами. Чем больше длина диполей l взаимодействующих молекул, тем больше энергия дипольного взаимодействия. Так как тепловое движение молекул нарушает ориентацию, то естественно повышение температуры ослабляет связи ориентационного (дипольного) взаимодействия.

Индукционное взаимодействие – взаимодействие полярной и неполярной молекул. В неполярной молекуле значение постоянного дипольного момента равно нулюmр=0. Под действием электрического поля полярной молекулы может индуцироваться в неполярной молекуле диполь с mi =0 и и последняя становится индуцированно–полярной. Между постоянным диполем молекулы А индуцированным диполем молекулы В возникает индуционное взаимодействие (рис.42.). Не все полярные молекулы обладают одинаковой способностью к индуцированию: чем выше поляризуемость молекулы, тем больше величина возникающего в ней индуцированного момента и тем сильнее индукционное взаимодействие.

А В

ll=0 l=0 l=0

l li li li

Рис.42. Индукционное взаимо– Рис.43. Дисперсионное взаимо–

действие молекул. действие молекул.

Так как индуцирование приводит к изменению или деформации электронной оболочки молекулы, то этот тип взаимодействия иногда называют деформационным. Индуцирование или деформация неполярной молекулы зависит от напряженности поля полярной молекулы, а поэтому индуцированный эффект не зависит от температуры.

Дисперсионное взаимодействие – взаимодействие двух неполярных молекул. Хотя у обеих неполярных молекул дипольный момент равен нулю, вследствии пульсирующего движения электронного облака (или движения электронов внутри молекулы) в одной из молекул на мгновение возникает незначительный дипольный момент, который индуцирующе действует на соседнюю молекулу, и т.д. Между этими диполями возникает дисперсионное взаимодействие (рис.43.), которое тем больше, чем легче поляризуется молекула или атом и чем меньше расстояние между взаимодействующими молекулами. На дисперсионном взаимодействии основан процесс сжижения благородных и двухатомных элементарных газов, молекулы которых не имеют дипольного момента.

Следует отметить, что для реальных молекул установить какой-либо единственный тип взаимодействия невозможно. Практически при взаимодействии молекул проявляются в определенной степени все три типа взаимодействия. Вклад каждого из рассмотренных типов межмолекулярного взаимодействия зависит в основном от двух свойств взаимодействующих молекул: полярности и поляризуемости (деформируемости). Чем выше полярность, тем значительнее роль ориентационных сил; чем больше деформируемость, тем значительнее роль дисперсионных сил. Индукционные силы зависят от обоих факторов.

Все три типа сил межмолекулярного взаимодействия имеют одну и ту же природу – электростатическую и обуславливаются электрическими полями молекул или атомов.

Глава 5.

Агрегатные состояния химических веществ.

В химии, а еще больше в химической экологии, важное значение имеет агрегатное состояние вещества. Раньше считали, что существует три агрегатных состояния: твердое, жидкое и газообразное. Не так давно добавилось четвертое состояние вещества – плазма.

Любое вещество в зависимости от температуры и давления может находиться в том или ином агрегатном состоянии. Как правило, при низких температурах и высоких давлениях вещество находится в твердом агрегатном состоянии, а при высоких температурах и низких давлениях – в газообразном состоянии. При температурах порядка тысяч и миллионов градусов вещество переходит в ионизированный газ – плазму.

При обычных условиях – комнатной температуре и атмосферном давлении – химическое вещество находится в определенном для него, привычном для нас, стандартном агрегатном состоянии, например, Н2О – жидкость, СО2 – газ, СаСО3 – твердое.

Знание особенностей каждого агрегатного состояния вещества необходимо не только химику, но и химику – экологу для понимания механизма процессов взаимодействия веществ.

Нахождение вещества в определенном агрегатном состоянии зависит как от природы, так и от характера взаимодействия частиц (молекул, атомов, ионов), образующих вещество. Следует иметь ввиду, что в обычных условиях атомы и молекулы практически теряют свою индивидуальность: вступая во взаимодействие, дают более высокую организацию вещества, чем индивидуальная молекула, образуя совокупность, названную агрегатным состоянием.

Переход от атомов и молекул к агрегатному состоянию вещества – химический процесс. Природа сил, обуславливающая образование агрегатного состояния, такая же, как и природа химической связи – электростатическая. Хотя переход из одного агрегатного состояния к другому не приводит к изменениям стехиометрического состава вещества, но он связан с определенным изменением его структуры. И поэтому данный процесс относится к химическому. Условие перехода из одного агрегатного состояния вещества в другое зависит от характера связи между частицами. Межагрегатный переход может сопровождаться изменением силового типа связи. Каждое агрегатное состояние характеризуется определенным характером движения частиц относительно друг друга и расстоянием между частицами. Так, если расстояние между частицами в твердом веществе порядка размеров самих частиц, то расстояние между частицами вещества в газообразном состоянии значительно превышают их размеры. Промежуточное положение занимают жидкости.