Смекни!
smekni.com

Биохимия углеводов в организме человека (стр. 2 из 2)

Гликолиз- расщепление глюкозы без потребления кислорода, сложный ферментативный процесс, протекающий в тканях человека и животных. В результате глюкоза превращается в молочную кислоту с образованием богатых энергией фосфорных соединений – АТФ.

глюкоза+2 АТФ+2 Фн ® молочная кислота+2 АТФ+2 Н2О

Процесс гликолиза катализируется 11 ферментами и протекает в цитоплазме клетки. Биологическое значение гликолиза - образование богатых энергией фосфорных соединений.

В первой стадии гликолиза затрачивается 2 молекулы АТФ (1 и3 реакции)

Во второй стадии образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции),

Таким образом, энергетическая эффективность гликолиза составляет 2 молекулы АТФ на 1 молекулу глюкозы, изменение свободной энергии при расщеплении 1 молекулы глюкозы

глюкоза®молочная кислота + 210 кДж/моль

к.п.д. составляет около 0,4

В процессе гликолиза ряд последовательных реакций начинается с «активации» глюкозы. Взаимодействие глюкозы с АТФ, в результате которого образуется глюкозо-6-фосфат и АДФ, катализируется ферментом гексокиназой. При этом переносится только концевая фосфатная группа аденозинтрифосфата и остается аденозиндифосфат (АДФ). После этой подготовительной реакции происходит перестройка молекулы с образованием фруктозо-6-фосфата, затем - перенос второй фосфатной группы с образованием фруктозо-1,6-дифосфата (фруктоза с фосфатными группами при 1 и 6 атомах углерода) и АДФ. Фруктозо-1,6-дифосфат, расщепляется ферментом альдолазой на два трехуглеродных сахара: 3-фосфоглицериновый альдегид и диоксиацетонфосфат, которые могут превращаться друг в друга под влиянием фермента триозофосфатизомеразы.

3-фосфоглицериновый альдегид реагирует с соединением, содержащим SH-группу, при этом образуется группировка, способная отдавать водород молекуле НАД. Продукт этой реакции - фосфоглицериновая кислота, связанная с SH-группой фермента, затем реагирует с неорганическим фосфатом, образуя 1,3-дифосфоглицериновую кислоту и свободный фермент с SH-группой. Другой продукт - 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту, после чего происходит образование макроэргического фосфата путем отщепления молекулы воды (дегидратация).

Продукт этой реакции - фосфопировиноградная кислота - может отдавать свою фосфатную группу молекуле АДФ с образованием АТФ и свободной пировиноградной кислоты. Это вторая макроэргическая фосфатная связь, образовавшаяся на уровне субстрата при превращении глюкозы в пировиноградную кислоту. Из каждой молекулы глюкозы образуются по 2 молекулы 3-фосфоглицеринового альдегида и таким образом, в процессе превращения глюкозы в пировиноградную кислоту образуются 4 макроэргические связи. Однако две из них используются в самом этом процессе. Поэтому в конечном итоге мы получаем 2 макроэргические связи.

1) глюкоза +АТФ®глюкозо-6-фосфат+АДФ

(фосфорилирование) гексокиназа, Мg2+

2) глюкозо-6-фосфат®фруктозо-6-фосфат глюкозофосфатизомераза

3) фруктозо-6-фостат+АТФ®фруктозо-1,6-дифосфат+АТФ

Мg2+ ,фосфофруктокиназа

4)фруктозо-1,6-дифосфат®дигидроксиацетонфосфат+

3-фосфоглицериновый альдегид, альдолаза

5) изомеризация триозофосфатов

дигидроксиацетонфосфат®3-фосфоглицериновый альдегид

триозофосфатизомераза

6)3-фосфоглицериновый альдегид+НАД+Н3РО4® 1,3дифосфоглицериновая кислота, глицеральдегидфосфатдегидрогеназа

7) 1,3-дифосфоглицериновая кислота+АДФ®3-фосфоглицериновая кислота+АТФ, фосфоглицераткиназа

8) 3-фосфоглицериновая кислота®2-фосфоглицериновая кислота, фосфоглицеромутаза

9) 2-фосфоглицериновая кислота®фосфопировиноградная кислота, энолаза

10)фосфопировиноградная кислота+АДФ®пировиноградная кислота+АТФ, пируваткиназа

11) пировиноградная кислота+НАДН2®молочная кислота +НАД, лактатдегидрогеназа

1 и 3 реакции лимитируют (определяют) скорость гликолиза, ингибируются АТФ.

В анаэробных условиях, в отсутствие кислорода, служащего конечным акцептором электронов, реакции переноса электронов прекращаются, как только все промежуточные акцепторы перейдут в восстановленное состояние, “приняв” все возможное количество электронов. Метаболизм глюкозы в этих условиях ведет к накоплению пировиноградной кислоты, которая принимает атомы водорода от восстановленных пиридиннуклеотидов с образованием молочной кислоты и окисленного НАД+, эту реакцию катализирует лактатдегидрогеназа, действующая в обратном направлении.

В результате превращения глюкозы в молочную кислоту образуются 2 макроэргические фосфатные связи и таким путем клетки даже в отсутствие кислорода могут получать небольшое количество энергии.

В клетках дрожжей пировиноградная кислота превращается в ацетальдегид, который может принимать атомы водорода от восстановленного НАДН с образованием НАД+ и этилового спирта.

Синтез гликогена из глюкозы протекает в несколько этапов.

Сначала глюкоза фосфорилируется за счет АТФ и превращается в глюкозо-6-фосфат. Эта реакция катализируется глюкокиназой.

Далее глюкозо-6-фосфат переходит в глюкозо-1-фосфат (фосфоглюкомутаза). Глюкозо-1-фосфат реагирует с уридинтрифосфатом (УТФ), при этом образуется уридинфосфоглюкоза. Глюкозный остаток УДФ глюкозы используется для удлинения молекулы гликогена, а освободившийся УДФ фосфорилируется за счет АТФ и превращается в УТФ. Таким образом, процесс синтеза гликогена протекает с затратой энергии, освобождающейся при распаде АТФ.

Преобладающим путем распада является фосфоролитический путь.

Гликогенолиз – распад гликогена до глюкозо-6-фосфата, который может включаться в процесс гликолиза.

1) гликоген распадается до глюкозо-1-фосфата

При участии фермента фосфорилазы

2) Далее глюкозо-1-фосфат под действием

фосфоглюкомутазы превращается в глюкозо-6-фосфат

дальнейшие превращения идут в двух направлениях:

глюкозо-6-фосфат превращается в глюкозу с использованием глюкозо-6-фосфатазы

глюкозо-6-фосфат включается в цикл Кребса

Поступающая в печень фруктоза фосфорилируется за счет АТФ при участии фруктокиназы, в результате образуется фруктозо-1-фосфат, далее под действием альдолазы он расщепляется на две триозы и затем превращается в пировиноградную кислоту.

Распад и синтез гликогена в печени, эти 2 процесса обеспечивают постоянство концентрации сахара в крови. Соотношение между синтезом и распадом регулируется нейро-гуморальным путем.

АКТГ, глюкокортикоиды и инсулин увеличивают содержание гликогена в печени.

Адреналин, глюкагон, соматотропный гормон гипофиза и тироксин стимулируют распад гликогена.

Механизм действия этих гормонов неодинаков:

Инсулин угнетает глюкозо-6-фосфатазу, способствуя накоплению гликогена.

Глюкокортикоиды увеличивают количество гликогена в печени косвенным путем, способствуя превращению белков и жиров в углеводы.

АКТГ стимулирует синтез гликогена через кору надпочечников.

Адреналин и глюкогон вызывают распад гликогена, активируя фосфорилазу.

Соматотропный гормон гипофиза уменьшает количество гликогена в печени косвенно стимулируя выделение глюкогона поджелудочной железой.

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов, например молочной или пировиноградной кислот. Протекает в клетках печени и почек. Большинство реакций глюконеогенеза представляет собой обращение реакций гликолиза.

Процесс окисления аминокислот начинается с их дезаминирования, т.е. отщепления аминогруппы. Оставшаяся углеродная цепь подвергается дальнейшим превращениям и в конце концов вступает в цикл Кребса. Так, например, аланин, после дезаминирования дает пировиноградную кислоту. Глутаминовая кислота - a-кетоглутаровую, а аспарагиновая - щавелевоуксусную. Эти 3 аминокислоты вовлекаются в цикл Кребса непосредственно, Другие аминокислоты, помимо реакции дезаминирования должны пройти еще несколько дополнительных реакций, прежде чем они смогут участвовать в цикле Кребса.


ЛИТЕРАТУРА

1. Мецлер Д. Биохимия. Т. 1, 2, 3. “Мир”2000

2. Ленинджер Д. Основы биохимии. Т.1, 2, 3. “Мир”2002

3. Фримель Г. Иммунологические методы. М. “Медицина2007

4. Медицинская электронная аппаратура для здравоохранения. М. 2001

5. Резников А.Г. Методы определения гормонов. Киев “Наукова думка”2000

6. Бредикис Ю.Ю. Очерки клинической электроники. М. “Медицина”1999