Смекни!
smekni.com

Витамины (стр. 5 из 6)

Пантотеновая кислота

Основные сведения

Синонимы

Пантотеновая кислота относится к группе витаминов В. Ее название в переводе с греческого означает "повсюду". Прежние названия-синонимы: витамин В5, антидерматитный фактор цыплят, антипеллагрический фактор цыплят. В природе встречается в форме D-пантотеновой кислоты.

Основные природные источники

Пантотеновая кислота широко представлена в продуктах питания, главным образом в составе кофермента А (кофермент ацетилирования). Его особенно много в дрожжах и в органах животных (печень, почки, сердце, мозг), но, по-видимому, обычным источником его поступления в организм являются яйца, молоко, овощи, бобовые и цельные зерновые продукты. В пище, подвергнутой обработке, количество пантотеновой кислоты будет снижено, если конечно эта потеря не возмещается впоследствии. Пантотеновая кислота синтезируется микроорганизмами кишечника, но количество вырабатываемой ими пантотеновой кислоты и его роль в питании человека до конца не выяснены.

Основные антагонисты

Этанол вызывает снижение количества пантотеновой кислоты в тканях при сопутствующем увеличении ее уровня в сыворотке. Эти данные дают основание предполагать, что утилизация пантотеновой кислоты у страдающих алкоголизмом нарушена.

Наиболее известным антагонистом пантотеновой кислоты, который используется в эксперименте для ускорения проявления признаков дефицита витамина, является омега-метил пантотеновая кислота. Кроме того, в экспериментах на животных было показано, что L-пантотеновая кислота также вызывает антагонистическое действие.

Метил-бромид, фумигант, используемый для борьбы с паразитами в местах хранения продуктов питания, вызывает разрушение пантотеновой кислоты в пище, которая подвергается воздействию этого фумиганта.

СОДЕРЖАНИЕ ВИТАМИНОВ В ПИЩЕВЫХ ПРОДУКТАХ

Приведенные в таблицах сведения о содержании витаминов в пищевых продуктах заимствованы из Справочника "Химический состав пищевых продуктов", 2-е изд., т.2, М., Агропромиздат, 1987 г. Средняя суточная потребность взрослого человека в витаминах принята в соответствии с "Нормами физиологических потребностей в пищевых веществах и энергии для различных групп населения СССР", утвержденных Министерством здравоохранения СССР в 1991 году.

Объемы (количества) пищевых продуктов, обеспечивающие суточную потребность человека в том или ином витамине, рассчитаны с учетом потерь витаминов при кулинарной обработке, в соответствии с коэффициентами этих потерь, приведенными в справочнике "Химический состав пищевых продуктов", т.3, М., "Легкая и пищевая промышленность", 1984. Эти данные помечены звездочкой (*).

Жирным шрифтом в таблицах выделены продукты, которые в обычно употребляемых количествах могут служить реальным источником тех или иных витаминов в питании человека.


ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО ВИТАМИНОВ И ВИТАМИНИЗАЦИЯ ПИЩИ

В настоящее время витамин А редко получают из рыбьего жира. Современный метод промышленного синтеза витамина А, идентичного природному, - сложный и многоступенчатый процесс.

В маргарин и молоко часто добавляют витамин А. Бета-каротин добавляют в маргарин и многие другие продукты (например, фруктовые напитки, заправки для салатов, смеси для выпечки, мороженое) благодаря его активности витамина А и в качестве естественного пищевого красителя.

Химический синтез витамина В1 представляет собой сложный процесс, включающий от 15 до 17 различных стадий. Хотя коммерческое производство тиамина впервые было осуществлено в 1937 году, широкомасштабное производство тиамина было начато только в пятидесятые годы, когда в связи с витаминизацией пищи резко возросла потребность в данном витамине.

Витаминизация белой муки, злаковых, макаронных изделий и риса была начата в США во время Второй Мировой войны (1939-1945), вскоре этому примеру последовали и другие страны. Витаминизация основных продуктов питания практически искоренило в развивающихся странах заболевания, связанные с недостаточностью витамина В.

Витамин В12 производится биотехнологическим методом преимущественно в форме цианокобаламина.

Витамин В12 широко применяется при витаминизации круп и некоторых напитков. Диетические продукты питания, такие как детские продукты и продукты для похудения обогащаются витаминами, и в том числе витамином В12. Обогащение продуктов витамином В12 особенно важно для лиц, употребляющих продукты с низким содержанием данного витамина, таких как строгие вегетарианцы.

Рибофлавин может быть получен путем химического синтеза или биотехнологическим методом. Химический синтез представляет собой усовершенствованный процесс, разработанный Куном и Каррером в 1934 году, использующий в качестве исходного материала о-ксилен, D-рибозу и аллоксан. Различные штаммы бактерий и дрожжей применяются для синтеза рибофлавина в коммерческих целях, с использованием дешевых природных материалов и промышленных отходов в качестве питательной среды для микроорганизмов.

Рибофлавин входит в число витаминов, часто добавляемых в белую муку и хлебобулочные изделия для того, чтобы компенсировать их потери при переработке. Он также используется для витаминизации молока, круп и диетических продуктов.

Витамины группы В широко используются для обогащения злаковых. Диетические продукты питания, такие как детские продукты и продукты для похудения обогащаются витаминами, в том числе пиридоксином.

Бета-каротин часто добавляют в маргарин и фруктовые напитки. В 1941 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (США) установило стандартные нормы добавления витамина А в маргарин; в настоящее время витамин А частично заменен на бета-каротин, который придает привлекательный желтоватый цвет продуктам. В силу своей безопасности бета-каротин признан более подходящим, чем витамин А для использования в целях витаминизации продуктов.

Ислер с коллегами разработал метод синтезирования бета-каротина, который был поставлен на промышленную основу начиная с 1954 года для получения бета-каротина в кристаллической форме.

Синтез биотина в коммерческом масштабе основан на методе, разработанном Голдбергом и Штернбахом в 1949 году, и использующем в качестве исходного материала фумаровую кислоту. В результате этого метода получают чистый D-биотин, идентичный природному соединению.

Биотин добавляют к молочным смесям и другим пищевым продуктам для детей и к диетическим продуктам.
Рост хлебопекарных дрожжей (Saccharomyces cerevisiae) находится в зависимости от биотина. Поэтому биотин, в качестве стимулятора роста, добавляется в питательную среду, используемую для ферментирования дрожжей. От биотина также зависят многие из микроорганизмов, применяемых в современной промышленной биотехнологии. Поэтому, в этом качестве, он добавляется в среду роста

В косметике биотин употребляется как компонент составов для ухода за волосами.

Синтез аскорбиновой кислоты был осуществлен Райхштейном в 1933 году, а спустя пять лет было осуществлено его промышленное производство. В настоящее время синтетический витамин С, идентичный натуральному, производится на промышленной основе из глюкозы путем химического и биотехнологического синтеза.

В пищевой промышленности аскорбиновая кислота используется в качестве натурального антиоксиданта. Это означает, что добавление аскорбиновой кислоты в пищевые продукты в процессе переработки или перед их упаковкой позволяет сохранить цвет, запах и питательную ценность продуктов. Такое применение аскорбиновой кислоты не имеет ничего общего с ее витаминной активностью. В процессе переработки мяса применение аскорбиновой кислоты позволяет снизить количество добавляемых нитритов и нитритный остаток в готовом продукте. (В желудке нитриты трансформируются в потенциально канцерогенные нитрозомины).

Добавление аскорбиновой кислоты в свежую муку улучшает ее пекарские качества, тем самым экономя 4-8 недель, необходимые для созревания муки после помола.

Холекальциферол производится промышленным способом путем воздействия ультрафиолетового света на 7-дегидрохолестерин, получаемый из холестерина различными методами. Эргокальциферол производят подобным образом из эргостерина, экстрагируемого из дрожжей. Исходным материалом для производства кальцитриола является производное холестерина прегненолон.

Во многих странах молоко и молочные продукты, маргарин и растительные масла, обогащенные витамином D, служат основным пищевым источником витамина D.

Витамин Е, выделяемый из природных источников, получают путем молекулярной возгонки и в большинстве случае путем последующего метилирования и этерификации пищевых овощных масляных продуктов. Синтетический витамин Е производят из природного растительного материала путем конденсации триметилгидрохинона с изофитолом.

Витамин Е в форме dl-a-токоферола находит широкое применение в качестве противоокислительного средства (антиоксиданта) для стабилизации пищевых масел и жиров и жиросодержащих продуктов питания.

Исследования показали, что витамин Е в комбинации с витамином С снижает образование нитрозоминов (которые, как показали опыты на животных, являются канцерогенами) в беконе более эффективно, чем один витамин С.

Витамин Е используется для местного применения в качестве противовоспалительного средства для увлажнения кожи и предохранения ее от повреждающего воздействия ультрафиолетовых лучей.

Фолиевая кислота производится в больших масштабах с использованием химического синтеза. Известны различные процессы ее производства. Большая часть синтетической фолиевой кислоты используется в качестве добавки к корму животных.