Смекни!
smekni.com

Высокомолекулярные соединения и поверхностно активные вещества (стр. 2 из 3)

Неионогенные ПАВ не диссоциируют при растворении на ноны; носителями гидрофильности в них обычно яаляются гидроксильные группы и полигликолевые цепи различяой длины.

Существуют также ПАВ, в к-рых нарялу с неионогенными гидрофильными атомными группами присутствуют ионогенные.

В отдельный класс выделяют фторуглеродные ПАВ — соединения с полным или частичным замещением атомов водорода в гидрофобных радикалах на атомы фтора. Кр. того, как отдельную группу следует рассматривать высокомолекулярные ПАВ — адсорбционно активные водорастворимые полимеры ионогенного (полиэлектролиты) и неионогенного типов.

Все ПАВ можно разделить на две категории по типу систем, образуеных ими при взаимодействии с растворителем. К одной категории относятся мицеллообразующие (полуколлоидные, мылоподобные) ПАВ, к другой — не образующие мицелл. ПАВ первой категории в р-ре выше нек-рой (определенной для каждого вещества) «критической» концентрации образуют мицеллы,т. е. молекулярные или ионные ассоциаты с числом молекул (ионов) от нескольких десятков до нескольких сотен. Ниже критической концентрации мицеллообразования (ККМ) вещество находится в истинно растворенном состоянии, а выше ККМ — как в истинно растворенном, так и в мицеллярном.

Мицеллы ПАВ находятся в обратимом термодинамич. равновесии с молекулами; при разбавлении р-ра они распадаются, а при увеличении концентрации вновь возникают. Обычно такие р-ры обладают моющей способностью. ПАП второй категории не образуют мицелл ни в р-рах, ни в адсорбционных слоях. При любой концентрации они находятся в истинно растворенном состоянии.

Молекулярное строение и получение

Ионогенные ПАВ. Анионоактивные вещества составляют большую часть мирового производства ПАВ. Промышленные ПАВ этого типа можно разделить на след. основные группы: карбоновые к-ты и их соли (мыла), алкилсульфаты (сульфоэфиры), алкилсульфонаты и алкиларилсульфонаты, прочие продукты.

В производстве мыл и многих ионо и неионогенных мылоподобных ПАВ используют карбоновые к-ты, получаемые гидролизом из растительных и животных жиров, и синтетические жирные к-ты. Промышленное значение имеют также смоляные и жирные к-ты таллового масла — побочного продукта целлюлозного производства — смоляные к-ты канифоли, среди которых преобладает абиетиновая.

Наибольшее значение как ПАВ из солей монокарбоновых к-т имеют мыла (натриевые, калиевые и аммонийные) жирных к-т RСООН, где R — насыщенный или ненасыщенный нормальный алифатический радикал с числом атомов углерода 12—18, и мыла (натриевые, реже калиевые) смоляных к-т. Практическое значение имеют также дикарбоновые к-ты, напр. алкенилянтарные, получаемые в пром-сти конденсацией непредельных углеводородов с малеиновым ангидридом.

Алкилсульфаты синтезируют обычно сульфоэтерификацией высших жирных спиртов или α - олефинов с последующей нейтрализацией оответственно первичных или вторичных алкилсерных кислот.

Алкиларилсульфонаты, гл. обр. моно- и диалкилбензолсульфонаты, а также моно- и диалкилнафталинсульфонаты составляют больпиую часть синтетич. аняоноактивных ПАВ.

Алкилсульфонаты обычно получают из насыщенных углезодородов С12 — С18 нормального строения, к-рые сульфохлорируют или сульфоокисляют с последующим омылением или нейтрализацией продукта.

Катионоактивные IIАВ можно разделить на след. основные группы: амины различной степени замещения и четвертичные аммониевые основания, др. азотсодержащие основания (гуанидиню, гидрозины, гетероциклические соединении и т. д.), четвертичные фосфониевые и третичные сульфониевые основания.

Сырьем для катионоактвных ПАВ, имеющих хозяйственное значение, служат амины, получаемые из жирных к-т и спиртов, алкгалогенидов, а также алкилфенолов. Четвертичные аммониевые соли синтезируют из соответствующих длинноцепочечных галоидных алкилов реакцией с третичными аминами, из аминов хлоралкилированием или др. путями из синтетических спиртов, фенолов и фенольных смесей.

Большее значение как катионоактивные ПАВ и как исходные продукты в синтезе неионогенных ПАВ (см. ниже) имеют не только моно- , но и диамины, полиамины и их производные.

Амфотерные ПАВ м. б. получены из анионоактивных введением в них аминогрупп или из катионоактивных введением кислотных групп.

Такие соединения, например RNHCH2CH2COONaполучают взаимодействием первичного амина и метилакрилата с последующим омылением сложноэфирной группы щелочью.

Пром-стью амфотерные ПАВ выпускаются в небольшом количестве, и их потребление расширяется медленно.

Неионогенные ПАВ. Это наиболее перспективный и быстро развивающийся класс ПАВ. Не менее 80—90% таких ПАВ получают присоединением окиси этилена к спиртам, алкилфенолам, карбоновым к-там, аминам и др. соединениям с реакционноспособными атомами водорода. Полиоксиатиленовые эфиры алкилфенолов — самая многочисленная и распространенная группа неионогенных ПАВ, включающая более сотни торговых названий наиболее известны препараты ОП-4, ОП-7 и ОП-10. Типичное сырье — октил-, ионил- и додецилфенолы; кр. того, используют крезолы, крезоловую к-ту, β-нафтол и др. Если в реакцию взят индивидуальный алкилфенол, готовый продукт представляет собой смесь ПАВ общей ф-лы RC6H4O(CH2O)mH, где т— степень оксиэтилирования, зависящая от молярного соотношения исходных компонентов.

Полиоксиэтиленовые эфиры жирных к-т RСОО(СН2СН2О)mН сиyтезируют прямым оксиэтилированием к-т или этерификацией к-т предварительно полученным полиэтиленгликолем.

Полиоксиэтиленовые эфиры спиртов RО(СН2СН2О)mН приобрели важное промышленное значение, т. к. они легко поддаются биохимич. разложению в природных условиях. Их получают оксиэтилированием высших жирных спиртов, реакцией алкилбромида с мононатриевой солью полиэтиленгликоля и др. путями.

Полиоксиэтиленовые эфиры меркаптанов, как и спиртов, получают обычно оксиэтилированием третичных алкилмеркаптанов, а также первичных н-алкилмеркаптанов и нек-рых алкилбензолмеркаптанов.

Полиоксиэтиленовые производные алкиламинов составляют весьма разнообразную группу ПАВ, многие из к-рых выпускают в пром-сти. Эти ПАВ, будучи по своей природе катионоактивными, с увеличением длины полиоксиэтиленовой цепи приобретают ярко выраженные свойства неионогенных веществ. Наиболее важны в практич. отношении продукты оксиэтилирования первичных н-алкиламинов, трет-алкиламинов и дегидроабиетиламинов.

Выпускают также продукты на основе полиэтиленполиаминов, напр. диэтилентриамина, но они не имеют широкого применения. В промышленном или полупромышленном масштабе производят ПАВ с третичным алифатич. радикалом RС(СН3)2NН (СН2СН2О)mН, содержащим 12—22 атома углерода, и т = 1 — 25; полиоксиэтилендегидроабиетиламины (на основе к-т канифоли и таллового масла); полиоксипропиленовые производные аминов — «пропомины».

Полиоксиэтиленалкиламиды обычно получают оксиэтилированием амидов или предварительно полученных моно- или днэтилоламидов жирвых к-т (лауриновой, пальмитиновой, олеиновой).

Ряд неионогенных ПАВ получают на основе полиатомных спиртов, частично этерифицированных жирными к-тами. Используют спирты, содержащие от 2 до 6 гидроксильных групп, пентаэритрит, полиглицерины, углеводы. При оксиэтилировании к свободным гидроксильным группам исходного продукта присоединяются полиоксиэтиленовые цепи разной длины.

Др. путь получения ПАВ из полиатомных спиртов — сначала оксиэтилирование, а затем этерификация.

Практич. значение блоксополимеров окиси этилена и окиси пропилена как ПАВ постоянно возрастает. Их получают ступенчатой полимеризацией, используя в качестве «затравки» соединения, содержащие реакционноспособные атомы водорода.

Монофункциональные исходные соединения для синтеза таких ПАВ — одноатомные спирты, к-ты, меркаптаны, вторичные амины, N-замещенные амиды и др. Гидрофобной частью молекулы служит остаток исходного вещества, если оно имеет достаточно длинный алифатич. радикал, и полипропиленоксидный блок.

Помимо плюроников на основе функционального исходного соединения известны др. ПАВ, такие как плюродаты.

Исходными веществами с тремя функциональными группами в синтезе блоксополимерных неионогенных ПАВ могут быть глицерин и др.

Из тетрафункциональных соединений для синтеза блоксополимерных ПАВ чаще всего используют алифатич. первичные диамины. Наиболее известны тетроники.

Получают также блоксополимеры окисей алкилена на основе пентаэритрита, диатилентриамина, гекситов (сорбита и маннита), сахарозы и др.

Неионогенные ПАВ различных типа используют как исходные продукты для получения ряда ионогенных ПАВ. На основе оксиэтилированных алифатич. спиртов, алкилфенолов и др. рассмотренных выше веществ синтезируют поверхностно-активные сульфаты, фосфаты, карбоксилаты и четвертичные аммониевые соединения.

К большинству оксиэтилированньгх продуктов можно присоединить акрилонитрил с последующим переводом полученного амина в четвертичное аммониевое основание обычными методами.

Фторзамещенные ПАВ составляют обширный класс соединений. Многие фторзамещенные ПАВ разных типов получают на основе фторангидридов перфторкарбоновых и перфторсульфоновых к-т.

Высокомолекулярные ПАВ — растворимые карбо- или гетроцепные полимеры ионогенного или неионогеного типа с мол. массой от нескольких тысяч до нескольких сотен тысяч. Среди них есть природные соединения (белки, альгенаты, пектиновые вещества и т. д.), продукты химич. обработки природных полимеров (напр., производные целлюлозы) и синтетич. полимеры.

В структуре типичных высокомолекулярных ПАВ должно быть четкое разграничение гидрофильных и гидрофобных участков. ПАВ являются сополимеры или гомополимеры, в к-рых вдоль длинной гидрофобной основной цепи расположены через определенные интервалы гидрофильные боковые цепи или группы. Типичные представители анионоактивных ПАВ этой группы — полиакриловая и полиметакриловая к-ты, их соли и нек-рые производные, а также карбоксилсодержащие полимеры на основе поливинилового спирта, полиакриламида, сополимеров малеинового ангидрида с др. непредельными соединениями. Поверхностной активностью обладают сульфированные и сульфоэтерифицированные полимеры (полистирол, поливиниловый спирт, оксиэтилированный поликонденсат п-алкилфенола с формальдегидом и др.).