Смекни!
smekni.com

Соотношения неопределённостей Гейзенберга (стр. 2 из 3)

В элементарной квантовой теории их представлют также в виде произведений предельных ошибок, неизбежных при совместных измерениях, а именно:

или как произведение неизбежных среднеквадратичных отклонений:

Читатель, видимо, понял, что форма представления соотношений Гейзенберга определяется лишь способом вычисления погрешностей, но суть их всюду одна и та же.

Корпускулярно-волновая природа микромира не допускает чрезмерно упрощённых представлений о локализованных системах, «воткнутых, втиснутых» в материальные точки.

Мир на самом деле состоит из элементов в достаточной мере делокализованных, хотя они и ничтожно малы по нашим меркам. Первичное ощущение «твердокаменности» той или иной системы и проистекающее отсюда её восприятие могут быть обманчивы, и лишь строгий анализ фактов исключает заблуждения и ошибки.

Но тем, кто всё же решил, что принцип Гейзенберга разрешает ошибаться, заметим, что это мнимое право люди (особенно в той или иной мере причастные к власти) присваивают и эксплуатируют куда чаще, чем допускают законы природы (да и законы общества тоже!), и напомним крылатую фразу знаменитого пройдохи и циника Талейрана: «...Это не преступление! Это гораздо хуже! Это же ошибка!».

При описании механических движений в системе частиц с номерами: {1,2, 3,...n} могут быть использованы различные пространственные переменные (прямоугольные-декартовы, косоугольные, полярные (шаровые, цилиндрические или эллиптические). Их полная совокупность, достаточная для составления исчерпывающих уравнений механики в конкретной задаче, называется конфигурационным пространствомK. Координаты могут быть декартовы {x1, y1, z1, x2, y2, z2, x3, y3, z3, ... xn, yn, zn}, или полярные, например, шаровые {r1, J1, j1, r2, J2, j2, r3, J3, j3, ... rn,Jn, jn}, или любые другие - в общем виде:

Максимальная размерность конфигурационного пространства K равна 3n - утроенному числу частиц в системе. Принадлежность переменных к конфигурационному пространству можно указать с помощью символов - кванторов включения, например, в виде:
.

Постулат 1.Волновая функция и её свойства (конечность, однозначность, непрерывность и нормировка)

Формулировка:

Всякое состояние квантово-механической системы описывается функцией состояния - волновой функцией, заданной на многообразии всех переменных конфигурационного пространства системы, и также времени:

Волновые функции обязаны удовлетворять нескольким математическим требованиям. Они должны быть: 1) конечны, 2) однозначны, 3) непрерывны, 4) нормированны, т.е.:

;(5.1)

Область интегрирования охватывает весь возможный диапазон значений каждой переменной во всём пространстве K. Вероятностный смысл волновой функции:

(5.2)

Нормировка оказывается условием суммирования плотности вероятности во всём конфигурационном пространстве. Квадрат модуля волновой функции является плотностью вероятности, с которой физическая система, пребывая в том физическом состоянии, которое описывается волновой функцией Y, распределена по конфигурационному пространству. Функции, отвечающие условиям 1, 2, 3 называются регулярными.

Волновая функция это математический образ квантово-механического состояния физической системы. Конечно же, это функция механического состояния системы.

Постулат 2. Измерения физических величин и операторные уравнения на собственные значения эрмитовых операторов

Формулировка:

Разрешёнными значениями динамической переменной являются те, что являются собственными значениями эрмитова оператора данной динамической переменной:

(5.3)

Операторные уравнения являются математическими образами измерений. Операторы удобно рассматривать в качестве образов макроскопических приборов. Выражения для операторов основных динамических переменных. Оператор импульса и его rомпоненты (из формулы бегущей волны де Бройля). Операторы координат и оператор потенциальной энергии совпадают с самими этими переменными. Взаимосвязь операторов различных динамических переменных определяется тем, что они отображают макроскопическое устройство приборов. Операторы момента импульса одной частицы и его компонент имеют вид

, оператор кинетической энергии единственной частицы равен
, а для системы нескольких частиц представляет собою сумму вида
. Радиус-вектор частицы
, и его оператор представляет собой просто множитель перед волновой функцией, т.е. имеет вид:
. Оператор потенциальной энергии это также просто множитель перед волновой функцией U(r)×, оператор полной энергии – гамильтониан складывается из операторов кинетической и потенциальной энергии:
. (5.4) Принимается, что
и операторы всех прочих динамических переменных построены из этих двух по формулам классической механики.

Причина классической схемы взаимосвязи кроется в том, что операторы являются образами макроскопически устроенных приборов, а конструкционные компоненты которых подчиняются законам классической (макроскопической) физики.

Состояния и волновые функции, соответствующие определённым квантованным значениям физически наблюдаемой величины - тем, которые непосредственно проявляются в измерениях, называются чистыми.


Постулат 3.Уравнения Шрёдингера (временное и стационарное)

Формулировка:

Волновые функции, описывающие возможные состояния изменяющейся во времени физической системы, являются решениями временного уравнения Шрёдингера:

(5.5)

Для стационарной системы уравнение Шрёдингера принимает вид операторного уравнения на собственные значения гамильтониана:

(5.6)

Обратимся к стационарнымсистемам. Введём гамильтониан, не зависящий от времени, и получится стационарное уравнение Шрёдингера. Выявим смысл комплексного сопряжения волновых функций как признак механической обратимости во времени решений уравнения Шрёдингера:

Результат (5.9)- это стационарное уравнение Шрёдингера. Оно представляет собой операторное выражение закона сохранения энергии стационарной системы. Это чисто пространственная часть общего решения. Временная часть описывает периодический процесс.

Внимание! Операция комплексного сопряжения временной компоненты волновой функции состоит в замене знака перед аргументом - временем в показателе комплексной экспоненты. Эта простая алгебраическая операция совершенно идентична простой замене знака перед переменной времени. Получается, что при изменении отсчёта времени на обратное, не изменяются законы, которым починяется физическая система. Это важнейший результат, состоящий в том, что уравнение Шрёдингера описывает процессы, обратимые во времени.

Постулат 4. Суперпозиция состояний. Состояния чистые и смешанные. Математические и физические основания принципа суперпозиции

Формулировка 1 (скорее математическая):

Если две волновые функции fp и fq являются решениями операторного уравнения на собственные значения, то их линейная комбинация F=cpfp+ cqfq также является его решением.

Истоки этой формулировки лежат в теории дифференциальных уравнений.

Формулировка 2 (скорее физическая):

Если система может находиться в состояниях с волновыми функциями fp и fq , то она может находиться и в состоянии с волновой функцией F=cpfp+ cqfq.

Истоки этой формулировки происходят из убеждения, что до опыта нельзя предсказать, в каком состоянии находится система, а потому приходится допустить для неё сразу все возможности.