Смекни!
smekni.com

Сравнительный анализ рециркуляционных схем на примере реакции изомеризации (стр. 4 из 7)

И подставим его в выражение (2.29), принимая, что на вход в систему подается чистый компонент А, xf = 1:

F –

– V1rA1 = 0 (2.36)

После преобразований:

rA1 =

(2.37)

Теперь выразим скорость химической реакции, протекающей во втором реакторе:

Содержание компонента А на выходе из реактора

xl2 =

(2.38)

Подставим (2.38) и (2.35) в (2.32), принимая, что в рецикле чистый компонент А, xr = 1:

(2.39)

После преобразований

rA2 =

(2.40)

затем, подставляя (2.37), получим выражение для скорости химической реакции во втором реакторе:

rA2 =

(2.41)

Для того чтобы достичь полного превращения сырья производительность реактора должна равняться количеству реагента А, поступающего на вход в систему

F = rA1V1 + rA2V2 (2.42)

Подставим выражения (2.37) и (2.41) в (2.42):

F =

(2.43)

После преобразований

L =

(2.44)

где L = R + F.

Мы получили аналитическую зависимость величины рецикла от объема реакторов.

По этому выражению мы можем построить и проследить зависимость величины рецикла от объема реакторов.

Примем k+, k - и F постоянными, а объемы реакторов равными между собой

V1 = V2.

k+ = 2

k - = 1

F = 10кмоль/час. При этих значениях с помощью программы Eсxel численно просчитаем, по формуле (2.44), зависимость величины рецикла от объема. Результаты представлены в таблице 2.2.

V1 V2 V R
4 4 8 63,33333
5 5 10 27,5
7 7 14 14,65909
10 10 20 10
20 20 40 6,8
30 30 60 6,071429
40 40 80 5,757576
50 50 100 5,584416

Продолжение.

60 60 120 5,475113
70 70 140 5,4
80 80 160 5,345269
90 90 180 5,303644
100 100 200 5,270936
110 110 220 5,244565
120 120 240 5,222857
130 130 260 5, 204678
140 140 280 5,189235
150 150 300 5,175953
160 160 320 5,16441
170 170 340 5,154286
180 180 360 5,145334
190 190 380 5,137363
200 200 400 5,130219
210 210 420 5,123781
220 220 440 5,117949
230 230 460 5,112641
240 240 480 5,10779
250 250 500 5,103339

Таблица 2.2. Численная зависимость величины рецикла от суммарного объема реакторов при подаче рецикла на вход второго реактора.

График по этим данным представлен на рис 2.4.

Рис.2.4. Зависимость величины рецикла от суммарного объема реакторов при подаче рецикла на вход второго реактора.

По графику видно, что с увеличением объема рецикл уменьшается и наоборот.

Концы кривой стремятся к некому пределу. Если взять, например, объем меньше предельной величины, то ни при какой величине рецикла 100% -ая конверсия не может быть достигнута.

Глава 3. Расчетная часть

С помощью пакета программ ChemCad проверяем аналитические расчеты и зависимости.

Эта программа, как и множество других, с успехом используется для решения многочисленных задач, связанных с анализом и синтезом ХТС, основными элементами которых являются реакционные и массообменные аппараты.

Проведем анализ двух рециркуляционных реакционно-ректификационных систем с различной подачей рецикла, но при одинаковых начальных условиях.

Сначала проверим зависимость величины рецикла от суммарного объема с помощью опытных данных снятых в программе ChemCad.

В обеих системах протекает одна и та же реакция изомеризации параксилола в ортоксилол. Начальный поток F=10 кмоль/час содержит только чистый параксилол, xf=1. Ректификационная колонна содержит 70 тарелок. Тарелка питания №35, паровое число Rb=50.

Рассчитаем минимальный суммарный объем реакторов по формуле

Vmin =

=
(3.1)

Где CAm = rA, при температуре реакции (t=1000C=3730K),

Где плотность считается по формуле, представленной в программном пакете ChemCad 5.2.

rA =

(3.2)

Коэффициенты для параксилола:

А = 0,67752

В = 0,25887

С = 616,2

D = 0.27596

Следовательно r = 2,98, а Vmin = 1,68м3, при k+= 2 и F = 10кмоль/час.

Для схемы с рециклом, охватывающим два реактора зависимость выглядит следующим образом (таблица 3.1): данные сняты при постоянном составе смеси в кубовой части колонны – содержание параксилола x=0.001м. д.

V, м3 R, кмоль/час
8 6,2
7 6,3
6 6,5
5 6,9
4 7,7
3 11,1
2,5 12,1
2 13,55
1,7 15,6
1,68 15,7

Таблица 3.1. Численная зависмиость величины рецикла от суммарного объема реакторов при охвате рециклом двух реакторов при постоянном составе х=0,001м. д.


Графическая зависимость по данным таблицы 3.1. представлена на рис. (3.1)

Рис.3.1. Зависимость величины рецикла от суммарного объема реакторов при подаче рецикла на вход первого реактора при постоянном составе смеси.

Для схемы с рециклом, охватывающим один реактор зависимость выглядит следующим образом (таблица3.2): данные сняты при постоянном составе смеси в кубовой части колонны – содержание параксилола x=0.001м. д.

V, м3 R, кмоль/час
8 7,5
7 7,8
6 8,5
5 11
4 13,2
3 13,5
2,5 15,9
2,2 16,3
2 19,5

Таблица 3.2. Численная зависимость величины рецикла от суммарного объема реакторов при подаче рецикла на вход второго реактора при постоянном составе х=0,001м. д.

График, по этим данным, представлен на рис.3.2.


Рис.3.2. Зависимость величины рецикла от суммарного объема реакторов при подаче рецикла на вход второго реактора при постоянном составе х=0,001м. д.

Из этих графиков (рис.2.2, 2.4, 3.1. и 3.2) видно, что вид зависимостей, полученных аналитически и рассчетно, совпадает. Прослеживается одна и та же закономесрность. С увеличением рецикла объем уменьшается и наоборот.

Теперь построим зависимости энергозатрат от величины рецикла, при постоянном составе смеси в кубе колонны, содержащей x=0.001м. д. параксилола, и суммарном объеме V=5м3:

Для схемы с рециклом, охватывающим два реактора численная зависимость представлена в таблице 3.3.

R, кмоль/час Rb Q*107, кДж/час
7 48 1,79177
8 43 1,60518
9 43 1,60509
10 43 1,60514
11 45 1,67978
12 45 1,67982
15 48 1,79183
20 53 1,97834
25 58 2,16508
30 63 2,35169
35 68 2,53832
40 73 2,72503
45 78 2,91184
50 83 3,09846
55 88 3,28511
60 93 3,47152
65 98 3,65804
70 103 3,84471
75 108 4,03104
80 113 4,21836
85 117 4,36775
90 122 4,55428
95 127 4,74097
100 132 4,92748

Таблица 3.3. Численная зависимость энергозатрат от величины рецикла при постоянном составе х=0,001м. д. и суммарном объеме реакторов V = 5м3 при подаче рецикла на вход первого реактора.

График представлен на рис.3.3.


Рис.3.3. Зависимость энергозатрат от величины рецикла при постоянном составе х=0,001м. д. и суммарном объеме реакторов V = 5м3 при подаче рецикла на вход первого реактора.

По графику видно, что при наращивании рецикла, энергозатраты увеличиваются, сначала походя через некоторый минимум, который соответствует оптимальной величине рецикла.

Для схемы с рециклом, охватывающим один реактор численная зависимость выглядит следующим образом (таблица 3.4):

R, кмоль/час Rb Q*107, кДж/час
7,5 81 3,02356
8 60 2,23976
9 50 1,86656
10 50 1,86636
11 50 1,86646
12 50 1,86641
15 51 1,90376
20 55 2,05305
25 60 2,23976
30 65 2,42644
35 70 2,61309
40 75 2,79947
45 79 2,94901
50 85 3,17299
55 89 3,32223
60 95 3,54617
65 99 3,69527
70 105 3,91953
75 109 4,06921

Продолжение.