Смекни!
smekni.com

Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов (стр. 5 из 7)

2.7 Нахождение единой кислотности рА с помощью

протонов

Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. Эти данные получены на основании подсчетов сумм и разностей хими­ческих энергий сольватации ионов в неводных растворах из данных об элек­тродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водо­рода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов была определена энергия сольватации протона и других ионов в различных растворителях.

При переходе от водного к неводному раствору следует считаться с том, что протяженность шкалы различна для разных растворителей. Для того чтобы оценить абсолютную кислотность, кроме протяженности шкалы нужно знать, как смещено начало шкалы кислотности одного растворителя но отношению к шкале кислотности воды.

Использование

протонов в различных растворителях в качестве единой меры изменения кислотности в разных растворителях однозначно характеризует величину смещения шкал кислотности.

Обозначим начало шкалы для воды через 0; шкала для этилового спирта имеет протяженность 19,3; если

= 4,2, то очевидно, что шкала в этиловом спирте начинается в области —4,2 и заканчивается при рА = 15,1. У метилового спирта
= 3,3, а вся шкала 16,9; шкала для него расположится от - 3,3 до +13,6;
в муравьиной кислоте
= 8,6, вся шкала равна 6,1, она расположена между -8,6 и -2,5. У амми­ака протяженность шкалы 32,7; она смещена по отношению к воде на 16,4 единицы, начало шкалы будет при рА = 16,4, а конец при рА = 49,1. Из этих сопоставлений следует, что самый щелочной раствор в муравьиной кислоте будет кислее самого кислого раствора в воде и самый кислый раствор в аммиаке щелочнее самого щелочного раствора в воде,

Относительное расположение шкалы рНр позволяет оценить отношение между единой кислотностью растворов и величиной рНр. Из рис. 2 сле­дует, что раствор кислоты в спирте, в котором активность а*=(рНр= 0), кислее соответствующего йодного раствори на 4,2единицы.

Рис. 2. Изменение рНр (1), рА (2), Н0 (3), и Н(-) (4) растворов HCl (I), и ацетатного буфера (II) в растворах этилового спирта в воде.

Однако не нужно думать, что всякий раствор кислоты в этиловом спирте будет кислее, чем в воде. В действительности рА нормального раствора соляной кислоты в этиловом спирте не будет равна -4,2, так как в нем вели­чина

значительно меньше величины
в воде.

Таким образом, в этиловом спирте, с одной стороны,

положителен, и это приводит к уменьшению рА и увеличению кислотности. С другой стороны, lg
отрицательны и по абсолютной величине больше, чем у воды, а это приводит к увеличению рНр и к уменьшению кислотности. В 1 н. рас­творе HCl в этиловом спирте величина
= 0,157. В результате этого рА 1 н раствора HCl в этиловом спирте будет не -4,2, а значительно меньше (только -3,3), но все же раствор в этиловом спирте значительно кислее, том в воде.

Можно сказать, что в этиловом спирте каждый ион лиония становится активнее, по число ионов лиония становится меньше.

Еще резче это будет проявляться в спиртовых растворах уксусной кислоты: с одной стороны, кислотность ионов лиония С2Н5ОН2+ по сравнению с водой увеличивается на 4,2 единицы, но, с другой стороны, константа диссоциации кислоты при переходе от воды к этиловому спирту уменьшается на 5,6 порядка, и оба эффекта в значительной степени компенсируются. Величина рА ацетатного буферного раствора только 5,5. Повышение абсо­лютной кислотности будет особенно большим только в разбавленных растворах сильных кислот, в которых

= 1.

Для иллюстрации на рис. 2 приведены данные для рН и рА разба­вленных растворов сильной соляной кислоты (0,002 н. НС1 + 0,008 н. NаCl) и буферных растворов, состоящих из 0,02 н. НАс и 0,01 п. NaAc + 0,0005 н. NaCl в смесях этилового спирта с водой.

Из рис.2 следует, что рНр разбавленных растворов соляной кислоты практически не изменяются при переходе от воды к спиртам. Наоборот, рА резко падают. В отличие от этого рНр ацетатного буфера сильно возрастают в связи со значительным ослаблением силы кислоты.. Величина рА этого буфера изменяется мало и не уменьшается, как в случае растворов HCl, а несколько возрастает. Из рис, 2 следует также, что ни H0,ни Н(-) не передают действительного хода зависимости единой кислотности с изменением растворителя. Более того, Н(-)одного и того же раствора, измерен­ная с помощью различных индикаторов [2,4-динитрофенол (Н(-))и димедон (Н(-))],расходятся. В этиловом спирте они отличаются более чем на еди­ницу рА. Еще большее расхождение между рА, Н0 и Н(-) для раствором сильных кислот, где они разнятся на 2—4 единицы.

3.Буферные растворы

Буферными называют растворы, рН которых практически на изменяется от добавления к ним небольших количеств сильной кислоты или щелочи, а также при разведении. Простейший буферный раствор – это смесь слабой кислоты и соли, имеющей с этой кислотой общий анион (например, смесь уксусной кислоты СН3СООН и ацетата натрия СН3СООNa), либо смесь слабого основания и соли, имеющей с этим основанием общий катион (например, смесь гидроксида аммония NH4OH с хлоридом аммония NH4Cl).

С точки зрения протонной теории1 буферное действие растворов обусловлено наличием кислотно-основного равновесия общего типа:

Воснование + Н+Û ВН+сопряженная кислота

НАкислота Û Н+ + А-сопряженное основание

Сопряженные кислотно-основные пары В /ВН+ и А- /НА называют буферными системами.

3.1.Классификация кислотно-основных буферных систем.

Буферные системы могут быть четырех типов:

1. Слабая кислота и ее анион А- /НА:

· Ацетатная буферная система СН3СОО-/СН3СООН в растворе СН3СООNa и СН3СООН, область действия рН 3, 8 – 5, 8.

· Водород-карбонатная система НСО3-2СО3 в растворе NaНСО3 и Н2СО3, область её действия – рН 5, 4 – 7, 4.

2. Слабое основание и его катион В/ВН+:

· аммиачная буферная системаNH3/NH4+ в растворе NH3 и NH4Cl,

область ее действия – рН 8, 2 – 10, 2.

3. Анионы кислой и средней соли или двух кислых солей:

· карбонатная буферная системаСО32- /НСО3- в растворе Na2CO3 и NaHCO3,область ее действия рН 9, 3 – 11, 3.

фосфатная буферная системаНРО42-2РО4- в растворе Nа2НРО4 и NаН2РО4, область ее действия рН 6, 2 – 8, 2

Эти солевые буферные системы можно отнести к 1-му типу, т. к. одна из солей этих буферных систем выполняет функцию слабой кислоты. Так, в фосфатной буферной системе анион Н2РО4- является слабой кислотой.

4. Ионы и молекулы амфолитов. К ним относят аминокислотные и белковые буферные системы. Если аминокислоты или белки находятся в изоэлектрическом состоянии (суммарный заряд молекулы равен нулю), то растворы этих соединений не являются буферными.Они начинают проявлять буферное действие, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из ИЭС в форму “белок-кислота” или соответственно в форму “белок-основание”. При этом образуется смесь двух форм белка: (R – макромолекулярный остаток белка)

а) слабая “белок-кислота” + соль этой слабой кислоты:

СОО- СООН

R – СН + Н+ ÛR – СН

N+Н3 N+Н3

основание А- сопряженная кислота НА

(соль белка-килоты) (белок-кислота)

б) слабое “белок-основание” + соль этого слабого основания: