Смекни!
smekni.com

Цинк и его свойства (стр. 3 из 4)

Предварительно рассчитайте Е0 химической реакции, используя метод электронно-ионного баланса.

Решение.

Для указанных уравнений запишем окислительно-восстановительные уравнения реакций. Сначала рассмотрим эти уравнения и решим их с помощью электронного баланса.

Запишем уравнения электронно-ионного баланса.

Суммируем уравнения.

Запишем полученное уравнение в молекулярном виде:

Рассчитаем Е0 химической реакции.

Суммируем уравнения.

Запишем полученное уравнение в молекулярном виде:

Рассчитаем Е0 химической реакции.

Составим уравнения ионно-электронного баланса.

Просуммируем полученные полу реакции.

Запишем уравнение в молекулярном виде.

Рассчитаем Е0 химической реакции.

10.3. Составьте и опишите схему гальванического элемента из металлического электрода данного металла и электродной системы С,

Решение.

Гальванический элемент состоит из катода и анода. Одним из электродов в нашем случае будет цинковый электрод, другим электродом будет инертный угольный электрод.

Запишем схему электрода.

Гальванический элемент состоит из цинковой пластины опущенной в раствор соли, что содержит ионы V3+ и H+ . поскольку РН <7. угольный электрод опущен в раствор, что содержит ионы

. Между электродами расположена диафрагма, которая пропускает ионы, но не дает смешиваться электродным растворам. Если электрическая цепь разеденена. То в при электродных пространствах быстро наступает равновесие.

Цинковая пластинка в гальваническом элементе легко отдает свои катионы в раствор, тогда она будет окислятся.

Каждый ион цинка, переходя в раствор, оставляет на пластинке два электрона. Из-за этого пластинка получит отрицательный заряд. На угольном электроде будут проходить процессы восстановления:

Если цепь замкнуть, то в гальваническом элементе возникнет электрический ток. Электроны из места, где плотность отрицательного заряда высока, будут переходить в место с меньшей плотностью отрицательного заряда.

В целом химическую реакцию. Которая происходит в гальваническом элементе можно записать так:

. В молекулярном виде уравнение будет иметь такой вид:
.

Важной характеристикой любого гальванического элемента будет его ЭРС. Она равна:

, если округлить полученное значение ЭРС, то мы получим:
. При вычислении ЭРС мы не учитывали влияния концентрации ионов на величину потенциала, а приведенные значения точны только для ситуации, когда концентрации веществ равны нулю. Поэтому значение ЭРС в реальных гальванических элементах будет несколько другим. Также надо отметить, что чаще используется медно-цинковые гальванические элементы, которые более дешевы чем элементы с использованием ванадия.

10.4. Опишите процесс электрохимической коррозии при контакте металла и изделия из Sn во влажной среде (Без аэрации и при аэрации).

Решение.

Если включения олова в цинк имеют значительные размеры, то мы будем иметь дело с гальваническим элементом.

Поскольку электродные потенциалы для олова и цинка равны:

Мы будем иметь гальванический элемент в котором цинк будет более активным металлом по сравнению с оловом, что приведет к его окислению.

Рассмотрим случай, когда мы имеем включения олова в цинк во влажной атмосфере без аэрации. Отсутствие аэрации означает отсутствие активного кислорода, который может вступать в электрохимические взаимодействия.

На скорость коррозии цинка будет также влиять наличие оксидной пленки на поверхности цинка.

Олово будет оказывать на цинк поляризирующее влияние, что приведет к тому, что цинк (потенциал которого меньше) будет поляризироваться анодно и скорость его коррозии возрастет.

На аноде будет проходить реакция:

.

На катоде, в роли которого выступает олово, будет протекать реакция:

. В результате реакции будет выделяться водород. Ионы гидроксила будут взаимодействовать с ионами цинка и в результате мы получим гидроксид цинка.

Рассмотрим процесс коррозии при аэрации. Наличие аэрации означает доступ кислорода к контакту двух металлов.

На аноде будет проходить реакция:

.

На катоде, в роли которого выступает олово, будет протекать реакция:

. В результате реакции мы получим ионы гидроксила. Ионы гидроксила будут взаимодействовать с ионами цинка и в результате мы получим гидроксид цинка.

Процесс коррозии при аэрации проходит более активно чем без аэрации, поэтому такой вид коррозии будет более опасен для цинковых деталей чем коррозия без доступа воздуха.

10.5. Опишите процесс электролиза с учетом перенапряжения.
Электролит – раствор ZnCl2PH= 2, 5

Электроды: катод – С,

анод – Zn.

Решение.

В растворе хлорид цинка будет диссоциировать на ионы согласно уравнения:

Рассмотрим процессы, которые будут происходить на аноде.

Анод цинковый. На цинковом аноде могут происходить несколько процесов:

Запишем потенциалы прохождения указанных процессов:

Перенапряжение выделения кислорода на цинковом электроде при плотности тока 1мА/см2 равно 1,75 В. Это значит, что кислород данной реакции выделятся не будет и на аноде возможны только две электрохимические реакции:

Как видно из значений электродных потенциалов на аноде будет происходить реакция окисления цинка:

, потенциал которой будет ниже чем потенциал восстановления хлора. Мы будем иметь дело с рафинированием цинка.

Рассмотрим электродные процессы на катоде. Материал катода – уголь или графит, катод инертен и не будет брать участия в электрохимических процессах. На катоде также возможны несколько реакций, рассмотрим их. РН среды равно 2,5. На графите при температуре 20ºС перенапряжение выделения водорода при плотности тока 1 А/см2 равно 1,2 В, а при плотности тока 1 мА/см2 всего лишь 0,6 В. За уравнением Нернста мы можем вычислить значение потенциала перенапряжения водорода при РН=2,5. потенциал водородного электрода находится в линейной зависимости от РН среды.

При давлении водорода 1 атмосфера

, и при РН=2,5 мы получим перенапряжение равное:

При плотности тока равной 1 А/см2 перенапряжение равно:

а при плотности тока 1 мА/см2
.