Смекни!
smekni.com

Микроэмульсии для очистки от масел и загрязнений иной природы (стр. 3 из 4)

Другие типы IIAB9 используемые в составе моющих средств

Выше рассматривалось моющее действие неионогенных ПАВ. Однако все рассмотренные принципы можно применить и к ПАВ других типов. В случае ионных ПАВ фазовое поведение можно эффективно изменять, варьируя концентрацию электролита, а не температуру. Большинство обычных анионных ПАВ гидрофильны, т. е. имеют слишком низкие значения КПУ, чтобы эффективно удалять загрязнения по механизму эмульгирования-солюбилизации. Однако, комбинируя такие ПАВ с гидрофобными этоксилированными спиртами или даже с алифатическими спиртами либо проводя процесс отмывания при высокой концентрации соли, можно добиться хорошего моющего действия.


Рис. 13. Результаты наблюдения за процессом отмывания с помощью метода эллипсометрии

Рис. 14. Зависимость степени удаления масляного загрязнения от содержания гидрофобного этоксилированного спирта С12Е4 в смеси с гидрофильным анионным ПАВ

Смесь двух ПАВ часто обладает улучшенным моющим действием по сравнению с каждым ПАВ по отдельности. Это явление называют «синергетиче-ским» эффектом. В большинстве случаев повышение моющего действия можно просто связать с тем, что результирующее значение КПУ смеси близко к единице, а индивидуальные компоненты или очень гидрофильны, или слишком гидрофобны. Этот эффект показан на рис. 14 для комбинации гидрофобного НПАВ С12Е4 и гидрофильного анионного ПАВ октилбензолсульфоната натрия. Такая же закономерность проявляется и для смесей гидрофильного НПАВ, например С12Е7, и гидрофобного анионного ПАВ, например додецил-бензолсульфоната натрия, при достаточно большой концентрации электролита.


Эффективность композиций на основе микроэмульсий

Микроэмульсии, будучи микрогетерогенными смесями масла, воды и ПАВ, являются прекрасными растворителями и для неполярных органических соединений, и для неорганических солей. Способность микроэмульсий солюбилизировать широкий спектр веществ в однофазных системах можно с успехом использовать для очистки поверхностей твердых тел от загрязнений, представляющих собой смесь гидрофильных и гидрофобных компонентов. Особый интерес для практики представляет возможность замены галогенированных или ароматических углеводородов на микроэмульсии, содержащие нетоксичные алифатические углеводороды. Типичный пример приведен на рис. 15.

Микроэмульсии для чистки твердых поверхностей, главным образом основанные на НПАВ, уже заняли в промышленности прочные позиции. Обычно они продаются в виде концентратов, которые нужно разбавлять перед употреблением. Отсюда ясно, что изотропная область должен быть локализована преимущественно в «водном» углу диаграммы. Типичный пример подходящей модельной системы представляет смесь СЕб, декана и воды при 30 0C. НПАВ весьма пригодны для таких композиций, поскольку их можно совмещать с ионными «структурообразователями» — фосфатами или цитратами. Существенным недостатком таких систем является сильная зависимость от температуры. Один из способов увеличения температурного интервала состоит в использовании смеси НПАВ, например смеси этоксилированных спиртов с длиной полиоксиэтиленовой цепи ниже и выше, чем у оптимального НПАВ. Продажные этоксилаты сами имеют широкое распределение по гомологам и поэтому образуют микроэмульсии в более широком температурном интервале, чем индивидуальные модельные соединения. Смешивая коммерческие НПАВ, можно добиться еще большего увеличения температурных интервалов.


Рис. 15. Удаление смазочного масла с помощью трех различных микроэмульсий, относящихся к биконтинуальным фазам

Использована смесь этоксилатов со средним значением ГЛБ, равным 10.7, и алифатических углеводородов с точками кипения в интервале от 190 до 240 °С. Удаление масла с использованием только углеводородов и трихлорэтана приведено для сравнения. Количество остаточного масла определено измерением флуоресценции

Рис. 16. Фазовая диаграмма системы СЕб-декан-вода при 30,40 и 50 °С

При 50 0C имеются две небольшие изотропные области в «водном» углу диаграммы. При 40 0C области существования этих фаз увеличиваются, но все еще остаются не связанными. При 30 0C появляется одна большая изотропная область в «водном» углу


Микроэмульсии и проблема повышения нефтеотдачи

Нефтяные месторождения состоят из пористых пород, обычно известняков или песчаников, в которых поры заполнены нефтью и солевым раствором. Пористве породы окружены непроницаемой породой. Проницаемость зависит от размера пор, типичный размер которых составляет 50-1000 нм. В типичном нефтяном пласте 10-25% объема пор занято рассолом, 55-80% — нефтью, остальное занимают пустоты. Обычно давление в пласте повышенное, а температура равна 70-100 °С.

Из вновь пробуренных скважин нефть выталкивается собственным давлением. За стадией самопроизвольного производства нефти следует выкачивание ее с помощью насосов. Вместе эти два процесса считают первичной нефтеотдачей. В среднем при этом из пласта вытесняется 15-20% содержащейся в нем нефти. На следующей стадии — вторичной нефтеотдаче — для вытеснения дополнительного количества нефти используется вода. В этом процессе воду закачивают в скважину, и она, продвигаясь наружу, как поршень, вытесняет нефть. Неподвижная нефть вытесняется через скважину.

Эффективность вторичной нефтеотдачи, как правило, невелика, особенно если вязкость нефти выше вязкости вытесняющей воды. Первичная и вторичная нефтеотдачи вместе обычно позволяют добыть из пласта значительно меньше половины общего запаса нефти.

Любой процесс нефтевытеснения, следующий за заводнением, относят к повышенной или третичной нефтеотдаче. Закачка растворов ПАВ, называемая микроэмульсионным заводнением, достаточно перспективна в этом плане. Интерес к микроэмульсиям с точки зрения повышения нефтеотдачи вызван их способностью понижать межфазное натяжение до ультранизких значений.


Рис. 17. Схема добычи нефти

В связи с этим считали, что добыча нефти с помощью ПАВ будет чрезвычайно выгодна экономически. В настоящее время улучшение техники бурения привело к снижению интереса к использованию микроэмульсий для нефтевытеснения. Поскольку было потрачено очень много усилий на развитие процессов с использованием ПАВ и исследования позволили существенно продвинуться в понимании фазового поведения систем масло-вода-ПАВ, ниже кратко обсуждается это проблема.

Главная причина неэффективности заводнения нефтеносного пласта состоит в том, что нефть в результате действия капиллярных сил оказывается запертой в порах и образует отдельные не связанные «ганглии». На рис. 18 показаны два различных механизма капиллярного захвата нефти, а именно, захват нефти в «капкан» в более широкой части поры и процесс шунтирования, вызванный конкуренцией течения по порам. Захват в «капкан» происходит в порах с большим соотношением объема поры и ее сечения. Смачивающая фаза формирует ободок вокруг несмачивающей фазы, которая в конечном итоге разрывается в узких сечениях. Шунтирование вызывается разницей размеров пор. Вязкостные силы заставляют жидкость течь быстрее по более широким каналам, в то время как капиллярные силы лучше всасывают вытесняющую фазу в поры меньшего размера. Таким образом, в условиях, когда течение связано с впитыванием, т. е. при низких скоростях инжектирования и небольшой вязкости вытесняющей среды, нефть захватывается преимущественно большими порами.

Рис. 18. Механизмы захвата нефти в порах: «капкан», шунтирование

Количество нефти, остающейся после заводнения месторождения, зависит от соотношения вязких сил, способствующих вытеснению нефти, и капиллярных сил, захватывающих нефть в порах. Для характеристики соотношения вязких и капиллярных сил используется безразмерная величина — капиллярное число Nc:

где м — вязкость и н — скорость движения вытесняющей жидкости.

Экспериментально установлено, что насыщение пространства пор остаточной нефтью становится постоянным, когда Ncснижается до некоторого значения, лежащего в интервале IO-IO-5. Обычное заводнение характеризуется значениями Ncниже указанной области. При значениях выше критического остаточное насыщение после заводнения падает практически линейно с увеличением IgNc.

Таким образом, путь для достижения хорошей нефтеотдачи заключается в достижении высоких значений Nc. В принципе увеличение Ncможно добиться, во-первых, за счет увеличения вязкостных сил скорости закачки воды), во-вторых, за счет снижения капиллярных сил, в-третьих, путем комбинации обоих факторов. Возможность увеличения вязкостных сил на практике оказывается ограниченной: высокое давление воды приводит к разрушению нефтеносной породы, а большие разрушения снижают эффективность вытеснения. Таким образом, остается одна переменная — межфазное натяжение на границе нефть-вода, которое требуется снизить до очень малых значений. Нетрудно показать, что, по крайней мере для породы, смачиваемой водой, для сообщения нефти подвижности и увеличения нефтеотдачи требуется снижение межфазного натяжения до значений порядка 10-3 мН/м.