Смекни!
smekni.com

Поверхностно-активные вещества (стр. 2 из 4)

Рис. 6. Зависимость мицеллярных чисел агрегации Nот концентрации С катионных димерных ПАВ, содержащих гидрофобную группу С12Н25 и мостики разной длины. Длина мостика: три метиленовые группы, четыре метиленовые группы, пять метиленовых групп. Для сравнения представлены данные для мономерного аналога.


Рис. 7. Зависимость вязкости нулевого сдвига з от объемной доли Ц поверхностно-активного вещества в растворе при 20 °С. ПАВ — Ci2H25N2-2-N2Ci2H252+2ВГ

Вязкость мицеллярных растворов ПАВ зависит от формы мицелл. В случае катионного димерного ПАВ с гидрофобными радикалами С12Н25 и мостиком из двух метиленовых групп обнаруживается резкое увеличение вязкости при 2%-ной концентрации. Из рис. 7 видно, что вязкость изменяется на 6-7 порядков в очень узком концентрационном интервале. Это изменение намного больше изменений вязкости в зависимости от концентрации, характерных для обычных катионных ПАВ, и связано с резким переходом от сферических мицелл к червеобразным мицеллам. Это характерное свойство димерных ПАВ с короткими мостиками. Такой переход и увеличение вязкости можно индуцировать наложением сдвигового напряжения даже при более низких концентрациях, чем в статических условиях. Необычные реологические свойства димерных ПАВ могут найти важные практические применения.

Димерные ПАВ являются в настоящее время объектом многочисленных исследований, результаты которых позволяют предсказать, что их особые свойства, а также резкое повышение вязкости при увеличении концентрации) найдут широкое применение в практических целях. Высокая эффективность и низкие значения KKM привели к исследованию возможностей их использования для солюбилизации разнообразных веществ. В модельных опытах с использованием в качестве солюбилизата углеводородов обнаружено, что димерные ПАВ обладают большей солюбилизационной способностью, нежели обычные ПАВ. Димерные ПАВ вследствие их плотной упаковки на границах раздела фаз представляют интерес как потенциальные смазочные агенты.

Много усилий направлено на создание молекул с заданной геометрией с помощью специфической геометрии димерных ПАВ. Такие ПАВ образуют везикулы и жидкокристаллические фазы в широкой области концентраций. Это свойство перспективно для практического использования. Примером может служить изготовление мезопористых молекулярных сит. Используя димерные ПАВ в качестве темплат, получили материалы кубической структуры с заданными размерами пор.

2. Поверхностно-активные вещества с разрушаемыми связями: привлекательность с экологической и других точек зрения

Молекулы традиционных ПАВ весьма устойчивы. Среди ПАВ, используемых в быту, неионных, катионных, химически нестойкими в обычных условиях являются только алкилсульфаты. В течение многих лет чувствительность алкилсульфатов к кислотному гидролизу рассматривалась как серьезная проблема. В частности, с ней сталкиваются исследователи и потребители в случае самого известного представителя этого класса ПАВ — додецил-сульфата натрия. Общее убеждение состояло в том, что слабые гидроли-зующиеся связи в молекулах ПАВ могут быть причиной многих проблем при их использовании и хранении. Следовательно, ставилась задача устранять такие связи.

В последние годы отношение к легко разрушающимся связям в молекулах ПАВ изменилось. Стремление защитить окружающую среду стало основным фактором при создании новых ПАВ, а скорость биоразложения стала важнейшим критерием. Одним из главных подходов, используемых для создания ПАВ с быстрым биоразложением, стало введение в их молекулы связей с ограниченной стабильностью. Из практических соображений слабую связь в молекулах ПАВ вводят в виде группировки, соединяющей полярную группу и гидрофобный радикал. Это означает, что в результате разрушения молекул сразу исчезает их поверхностная активность. Затем различными путями, которые в основном определяются типом продукта первичного разложения, происходит процесс биоразложения. Важнейшей характеристикой этого процесса является предельное разложение поверхностно-активного вещества, которое определяется количеством углекислого газа, выделяющегося в течение четырех недель в реакторе под действием специфических микроорганизмов. Предельное разложение ПАВ с лабильными связями выше, чем н ПАВ. не солепжаших таких связей. Обшая тенденция к использованию экологически безопасных продуктов обусловливает развитие производства ПАВ с лабильными связями.

Вторая причина для развития этого направления заключается в необходимости устранения трудностей, связанных с пенообразованием или нежелательным образованием устойчивых эмульсий при использовании композиций ПАВ. По-видимому, использование ПАВ с лабильными связями позволит в какой-то мере решить эти проблемы. Если лабильная связь в молекуле ПАВ находится между полярной группой и гидрофобным радикалом, разрыв этой связи приведет к образованию одного растворимого в воде продукта и второго — гидрофобного, не растворимого в воде. Очистку от обоих компонентов можно легко провести, пользуясь стандартными методиками. Этот подход особенно интересен в случае использования ПАВ в препаративной органической химии и во многих биохимических процессах.

В-третьих, перспективность использования ПАВ с ограниченной стабильностью заключается в возможности придания продуктам разложения новых полезных свойств. Например, поверхностно-активное вещество, входящее в состав композиций для личной гигиены, распадается с образованием продукта, полезного для ухода за кожей. Такие ПАВ иногда называют «функциональными» ПАВ.

Наконец, ПАВ, распадающиеся заданным образом на вещества, не обладающие поверхностной активностью, могут представлять интерес в специальных областях, например в биомедицине. Так, лабильные ПАВ, образующие везикулы или микроэмульсии, можно использовать при создании носителей для контролируемой доставки лекарственных веществ.

В большинстве случае лабильные ПАВ содержат в молекулах легко гидроли-зующиеся связи. Химический гидролиз катализируется кислотами или щелочами и достаточно хорошо изучен. В окружающей среде гидролиз лабильной связи происходит под действием ферментов, которые в этом случае выступают катализаторами процесса гидролиза. Следует сказать, что invitroферментативный гидролиз ПАВ с лабильными связями исследован далеко не полно. Существуют другие подходы, в которых для получения ПАВ с лабильными связями в молекулы включают связи, разрушающиеся под действием ультрафиолетового излучения или при озонировании. Ниже рассматриваются все указанные типы лабильных связей.

Лабильные ПAB, гидролизующиеся в кислой среде

Циклические ацетали

Лабильные ПАВ, производные циклических ацеталей — 1,3-диоксалана и 1,3-диоксана, представлены на рис. 8. Эти ПАВ гидролизуются в кислой среде. Их обычно синтезируют из длинноце-почечных альдегидов при взаимодействии с диолами или полиолами. Взаимодействие альдегидных групп с вицинальными гидроксигруппами приводит к образованию диоксолана, а взаимодействие с 1,3-диолами — к образованию диоксана.

Рис. 8. Получение 1,3-диоксолановых и 1,3-диоксановых ПАВ из длинноцепочечных альдегидов и 1,2- и 1,3-диолов соответственно

Если реакцию проводить не с диолами, а с глицерином, образуется гидрокси-ацеталь. Соответственно модифицируя оставшуюся свободной гидроксильную группу, можно получить анионное или катионное ПАВ. В результате взаимодействия с глицерином образуется диоксолановое кольцо со свободной первичной гидроксильной группой, но может также образоваться и диоксановое кольцо со свободной вторичной группой. На свободные гидроксигруппы действуют SO3, нейтрализуют и получают сульфатное ПАВ; при обработке пропан-сультоном получают сульфонатное ПАВ. Гидроксильные группы можно заместить бромом или хлором, а затем по реакции с диметиламином получить катионное ПАВ с третичным амином в качестве полярной группы. Получение четвертичного аммония можно провести обычными способами, например реакцией с метилбромидом. Свободную гидроксильную группу можно также эток-силировать, при этом получится неионное ПАВ с лабильной группой. Скорость разложения таких неионных ПАВ в отстойниках очистной станции намного превышает скорость разложения обычных этоксилатов.

Рис. 9. Примеры 1,3-диоксоланоых ПАВ: — анионное ПАВ, — катионное ПАВ

В результате гидролиза циклические ацетали превращаются в альдегиды, которые являются промежуточными продуктами в процессе биохимического в-окисления углеводородных цепей. Кислотный гидролиз незамещенных ацеталей при комнатной температуре происходит довольно легко и с высокими скоростями при рН 4-5. Электроноакцепторные заместители типа гидроксильной группы, эфирного кислорода и галогенов замедляют скорость гидролиза. Анионные ацетальсодержащие ПАВ более лабильны, чем соответствующие катионные ПАВ. Этот результат можно объяснить высокой локальной активностью ионов гидроксония вокруг мицелл анионных ПАВ. Такой же эффект наблюдается и для ПАВ, образующих везикулы, вокруг которых активность ионов гидроксония повышается. Ацетальсодержащие ПАВ устойчивы в нейтральной среде и при высоких значениях рН.