Смекни!
smekni.com

Обезжелезивание воды (стр. 2 из 6)

Слишком большое количество железа в организме пожилых мужчин и женщин способствует накоплению свободных радикалов, может ускорить развитие общего старения. Поэтому взрослым мужчинам и женщинам после наступления у них климакса препараты железа следует принимать крайне осторожно, только при наличии соответствующих показаний. Железо стимулирует окисление «плохого» холестерина (ЛПНП), что обусловливает прогрессирование атеросклероза, и вторично – ишемической болезни сердца. Гемохроматоз обычно развивается в среднем и старшем возрасте. При этом заболевании возникает бронзовая окраска кожи, развивается цирроз печени, сахарный диабет, поражается сердце. Последнее проявляется кардиомегалией, сердечной недостаточностью, аритмией, нарушением проводимости. Часто отмечаются гормональные нарушения – гипофизарная недостаточность, атрофия яичек с утратой либидо. Могут возникнуть боли в животе, артриты и хондрокальциноз [3].

Непонимание важности проблемы передозировки железа и связанной с ней необходимости обезжелезивания воды приводит к появлению в СМИ публикаций, вводящих в заблуждение широкие слои населения. Например, в статье Е. Моисеевой [12] рекламируется польза «железной» воды и рекомендуется постоянно употреблять ее без какой-либо очистки. Вряд ли население ощутит пользу от использования воды с избыточным содержанием железа, а вред здоровью от постоянного употребления такой воды может быть очень большим.

3. Формы существования железа в железосодержащих природных водах

Исходным материалом для образования и накопления железа в природных водах являются водовмещающие породы и породы, с которыми вода контактирует в процессе своей миграции. К их числу относятся песчано-гравийные и глинистые материалы, содержащие большое количество железистых соединений. Выявление форм содержания железа в воде является очень важной задачей, разрешение которой позволит предопределить метод его удаления.

Железо в природных водах может находиться в виде двух- и трехвалентных ионов, коллоидов органического и неорганического происхождения, таких как Fe(OH)3, FeS, Fe(OH)2, комплексных соединений с гуматами и фульвокислотами, а также в виде тонкодисперсной взвеси.

Коллоидная гидроокись железа образуется при рН выше 3, а осадок – при рН выше 4,5 (как правило, в окислительной среде). В природных водах значение рН обычно колеблется в пределах 6,2-7,5, поэтому в них не может содержаться трехвалентное железо, но может присутствовать (например, в подземных водах при отсутствии растворенного в воде кислорода и других окислителей) двухвалентное железо в виде ионов или в составе солей. В поверхностных водах железо обычно встречается в виде органических комплексных соединений, либо коллоидных или тонкодисперсных взвесей [13].

Формы, в которых железо находится в природных водах, в настоящее время недостаточно изучены. Однако, очевидно, что преобладающей формой существования железа в подземных водах является гидрокарбонат двухвалентного железа, который устойчив только при наличии больших количеств углекислоты и отсутствии растворенного кислорода. При уменьшении концентрации углекислоты, т.е. при повышении рН и появлении в воде растворенного кислорода или других окислителей, происходит процесс гидролиза, и железо переходит в малорастворимый гидроксид двухвалентного железа:

Fe2+ + 2HCO3- + 2H2O → Fe(OH)2 + 2H2CO3 (1)

При этом образуется ряд промежуточных соединений, и в воде одновременно присутствуют как недиссоциированные молекулы, так и ионы: Fe(HCO3)2, Fe(OH)2, Fe2+, Fe(OH)+. Далее происходит окисление по уравнению:

4Fe(OH)2 + О2 + 2Н2О → 4Fe(OH)3 (2)

Здесь также одновременно присутствуют промежуточные соединения, такие, как Fe(OH)2+ и Fe(OH)2+. Процесс окисления двухвалентного железа в трехвалентное во многих случаях в естественных условиях протекает при участии микроорганизмов – железобактерий, которые используют энергию, выделяемую при окислении железа (II).

Образующийся при окислении гидроксид железа (III) мало растворим в воде. Так, при рН = 4 в воде может содержаться до 0,05 мг/л Fe(OH)3, а при более высоких значениях рН – тысячные и еще меньшие доли мг/л. Гидроксид железа (III) может присутствовать в воде в коллоидном состоянии, которое является одной из основных форм существования железа в поверхностных водах. Устойчивость коллоидного железа в значительной степени повышается благодаря защитному действию гумусовых веществ. Железо может быть переведено из этого комплекса в осадок двумя путями: естественным – при участии бактерий, разрушающих органическое вещество, и искусственным – с помощью сильных окислителей, уничтожающих защитные коллоиды, либо под действием коагулянтов, например, золей кремниевой кислоты [13].

Выявление форм содержания железа в воде является очень важной задачей, разрешение которой позволяет предопределить метод его удаления.

4. Методы обезжелезивания воды

Выбор метода удаления железа из природных вод зависит от форм, количества железа и буферных свойств исходной воды. За полтора столетия существования технологии обезжелезивания воды было предложено и внедрено большое число методов удаления железа, все многообразие которых можно свести к двум основным типам: реагентные и безреагентные (физические).

Из применяемых в настоящее время методов обезжелезивания воды перспективными являются:

Безреагентные методы:

1) упрощенная аэрация (и фильтрование);

2) глубокая аэрация (с последующим отстаиванием и фильтрованием);

3) «сухая фильтрация»;

4) фильтрование на каркасных фильтрах;

5) электрокоагуляция;

6) двойная аэрация, обработка в слое взвешенного осадка и фильтрование;

7) фильтрование в подземных условиях с предварительной подачей в пласт окисленной воды;

8) аэрация и двухступенчатое фильтрование.

Реагентные методы:

1) упрощенная аэрация, окисление, фильтрование;

2) напорная флотация с известкованием и последующим фильтрованием;

3) известкование, отстаивание в тонкослойном отстойнике и фильтрование;

4) аэрация, окисление, известкование, коагулирование, флокулирование с последующим отстаиванием или обработкой в слое взвешенного осадка и фильтрование;

5) фильтрование через модифицированную загрузку;

6) катионирование.

Обезжелезивание поверхностных вод можно осуществить лишь реагентными методами, а для удаления железа из подземных вод наибольшее распространение получили безреагентные методы, в частности метод глубокой аэрации, который широко применяется как в нашей стране, так и за рубежом. Из реагентных методов наиболее распространен метод коагулирования сульфатом алюминия с предварительным хлорированием, а иногда и известкованием с последующим отстаиванием.

Многообразие методов обезжелезивания воды исключает их равноценность в отношении надежности, технологичности, экономической целесообразности, простоты, области применения и т.п. Степень изученности того или иного метода различна. Наиболее глубоким и всеобъемлющим исследованиям были подвергнуты методы глубокой аэрации, упрощенной аэрации, коагуляции и известкования. Остальные методы по разным причинам имеют ограниченное применение или недостаточно изучены для широкого внедрения в практику [13].

В литературе [11] есть данные о применении для обезжелезивания воды специального «черного» песка. Этот песок состоит из минерала пиролюзита MnO2 и обладает способностью при фильтровании через него быстро и эффективно очищать воду от двухвалентного железа. Пиролюзит можно заменить более доступной фильтрующей загрузкой, полученной искусственным путем.

Сущность этого метода заключается в предварительном формировании на поверхности зерен фильтрующей загрузки (кварцевый песок, керамзит и др.) каталитической пленки, состоящей в основном из оксида марганца MnO2.

При фильтровании воды оксид марганца (IV) окисляет двухвалентное железо, восстанавливаясь при этом до низших степеней окисления, а затем вновь окисляется растворенным в воде кислородом или другим окислителем при регенерации.

Процесс можно описать следующими реакциями:

4Fe(HCO3)2+3MnO2 +10H2O→ 4 Fe(OH)3 +MnO + Mn2O3 + 8 H2O + 8CO2↑ (3)

3 MnO + 2KMnO4 + H2O → 5 MnO2 + 2KOH (4)

3 Mn2O3 + 2KMnO4 + H2O → 8 MnO2 + 2KOH (5)

Каталитическое действие оксида марганца столь велико, что процесс окисления железа (II) завершается в слое загрузки толщиной 10-15 см при фильтровании обезжелезиваемой воды со скоростью 10 м/час. Таким образом, на поверхности пленки происходит окисление железа (II), адсорбция его ионов и мельчайших агрегатов гидроксида железа (III).

По мере фильтрования все новых и новых порций воды в составе пленки уменьшается содержание оксида MnO2 и растет количество оксида Mn2O3. Окислительная способность пленки иссякает при преобладании в ее составе оксида Mn2O3 и блокировании активной поверхности в результате адсорбции соединений железа. Указанный метод обезжелезивания целесообразно использовать при низких значениях рН воды, небольшом содержании сероводорода и солей аммония [13].

Метод фильтрования через фильтрующую загрузку с каталитическим действием не получил широкого распространения в нашей стране из-за относительно высокой стоимости хлорида марганца и перманганата калия, необходимых для регенерации и приготовления фильтрующей загрузки. Однако варианты этого метода используются некоторыми фирмами по производству фильтров для очистки воды.