Смекни!
smekni.com

Основные понятия и образы квантовой механики (стр. 3 из 3)

1.3.4. Сформулируем условие самосопряженности операторов. Выделим из операторных уравнений (1.1) и (1.4) собственные значения

и
, не нарушая равенств. Учтем, что символ оператора означает преобразование функции, записанной справа от него.* Поэтому, чтобы не нарушить смысла преобразования, влекущего за собой нарушение равенств (1.1) и (1.4), домножим слева первое из них на
, а второе на
. Затем следует справа домножить каждую из частей (правую и левую) обоих уравнений на произведение дифференциалов всех координат и результат проинтегрировать во всем пространстве изменения аргументов. Сравним ход этих преобразований:

,
;

,
;

,
;

,
.

Вообще говоря, это дело вкуса и удобства. Важно далее всюду соблюдать оговоренные однажды правила математического синтаксиса.

Правые части этих последних равенств равны:

и

Поэтому равны и левые, т. е. получаем равенство (1.5), которое выражает условие самосопряженности операторов, имеющих действительные собственные значения.

(1.5)

1.3.5. В формуле (1.5) представлена функция

и ее комплексно-сопряженный "двойник"
, а в общем виде эрмитов оператор
связывает две разные функции f и g аналогичной формулой:

(1.6)

Обратим внимание читателя на то, что процедура комплексного сопряжения оператора

и перевод его в
связана с тем, что мнимая единица в качестве численного параметра входит в конструкцию оператора.

1.3.6. Запись уравнений типа .(1,5) и (1.6) можно упростить и одновременно придать им дополнительный смысл, используя символы-скобки

и
, предложенные Дираком и называемые бра- и кет-символами соответственно (от англ. brасkets – скобки). Итак, вместо знаков интеграла, функций и дифференциалов переменных, образующих вместе операцию интегрирования, запишем эквивалентные символы:

и

где

называется бра-вектором, а
– кет-вектором. В таком случае интеграл от произведения двух функций приобретает вид скалярного произведения

(1.7)

Если в интеграл введем оператор, то получаем также символическое скалярное произведение

, (1.8)

в котором вектор

преобразован оператором
в новую волновую функцию-вектор, равный
.

Таким образом, в этой записи очень многие важные интегралы квантовой механики оказываются просто скалярными произведениями различных бра- и кет-векторов. Формула (1.6) в бракет-символах приобретает вид:

=
(1.9)

1.3.7. Из условия (1.6) или (1.9) вытекает чрезвычайно важное свойство собственных функций эрмитова оператора, называемое свойством ортогональности. Поясним смысл этого определения. Для этого рассмотрим две разные собственные функции эрмитова оператора, например, f и g, которым отвечают разные ненулевые собственные числа

и
соответственно, т.е. справедливы операторные равенства

и
(1.10)

Образуем скалярные произведения

и
(1.11)

Из первого скалярного произведения вычтем произведение, комплексно-сопряженное второму, и с учетом (1.11) получим:

(1.12)

По определению эрмитова оператора получаем:

,
,

откуда следует:

(1.13)

Поскольку

, то уравнение (1.13) справедливо, если

, или
(1.14)

Функции g и f, удовлетворяющие условию (1.14), называются ортогональными во всей области определения переменных по аналогии с ортогональными векторами, скалярное произведение которых равно нулю.

1.3.8. Ортогональный набор функций, эрмитова оператора очень удобен тем, что функцию, определенную на тех же переменных, можно разложить в ряд по набору. Таким образом, он может рассматриваться в качестве базисного набора, аналогичного набору ортогональных базисных векторов.

1.3.9. Такое разложение представляется всегда в виде линейной комбинации. Например, если ортогональный набор включает функции (f1, f2, f3,... fn,...),

, то строгое разложение произвольной функции F примет вид бесконечного ряда:

(1.15)

Если выбираемый ортогональный набор ограничен, то ряд состоит из конечного числа слагаемых.

Ортонормированные наборы собственных функций эрмитовых операторов представляют собой естественную основу для конструирования математических образов дискретных состояний физических систем.

1.3.10. Второе важное требование, которое предъявляется к операторам квантовой механики – это линейность. Линейным называют оператор, обладающий следующими свойствами:

(1.16)

где

и
– произвольные функции и а – произвольная постоянная. Можно подумать, что это слишком простые требования, но дело в том, что сравнительно узкий круг математических преобразований удовлетворяет им. Например, операция взятия синуса или возведения в степень не линейны и не могут служить основой для конструирования квантово-механических операторов:

Это негативные примеры. Напротив, операции умножения на некоторую функцию или число, дифференцирование и интегрирование отвечают линейности, т.е. подчиняются уравнениям


[1]Следует различать исследуемый образец, также приготовленный в макроскопической форме и изучаемую микросистему, одну из огромного множества в его составе.Возможность выделения отдельныхмикросистем – атомов, молекул и элементарных частиц достижима в современных экспериментах, но прибор довести до микроуровня нельзя, хотя современная микроэлектроника сделала серьезные шаги в этом направлении.