Смекни!
smekni.com

Електричні властивості молекул. Поведінка речовини в зовнішньому електричному полі (стр. 2 из 4)

Чим більша електронегативність атомів, що утворили молекулу, тим більший її дипольний момент. Розрахований дипольний момент (q · l) і визначений експериментально для одної молекули не співпадають. Наприклад:


μексп(D) μрозр(D)

СО 0,11 5,42

HCl 1,04 6,14

HBr 0,79 6,81

KCl 6,8 15,08.

Це вказує на те, що навіть у сильно іонних молекулах типу KCl немає повного переносу електрона від одного атома до іншого, а проходить тільки деформація електронної оболонки в напрямку більш електронегативного елементу.

Адитивна схема визначення дипольного моменту багатоатомної молекули. В основі схеми визначення дипольного моменту багатоатомної молекули лежить уявлення про те, що основним структурним елементом молекули є валентний зв’язок. Багатоатомну молекулу можна представити як систему хімічних зв’язків, кожен з яких можна розглядати як двохатомну молекулу з своїм дипольним моментом. Тому дипольний момент багатоатомної молекули може бути одержаний як векторна сума дипольних моментів хімічних зв’язків, що входять у молекулу. Ця схема називається адитивною. При векторному сумуванні дипольних моментів хімічних зв’язків обов’язково враховується геометрія молекули і напрямок дипольних моментів кожного зв’язку. Наприклад:

= μ12 + μ22 + 2μ1 · μ2 · cos Q,

μ1, μ2 – дипольні моменти хімічних зв’язків;

Q – кут між цими хімічними зв’язками.


Якщо μ1 = μ2 = μ, то

= μ12 + 2μ2cos Q = 2μ2 (1 + cos Q).

Якщо молекула має більше, ніж два зв’язки, то проводиться послідовне векторне сумування: до суми двох векторів додають третій, до результату – четвертий і т.д., враховуючи геометричне розташування і напрямок дипольних моментів хімічних зв’язків.

Як і для двохатомної молекули, розрахований і експериментально знайдений дипольний момент багатоатомної молекули не співпадають, що може бути пояснено внутрішньомолекулярними взаємодіями атомів.

Індукційний і мезомерний ефект. Індукційний ефект – зміщення електронної густини в напрямку більш електровід’ємного атома або групи атомів. Зрозуміло, що зміщення електронної густини проявляється на величині дипольного моменту. Мезомерний ефект – взаємодія π-зв’язків між собою і π-зв’язків з неподіленими р-електронними парами в атомах замісників. π–π-спряження – делокалізація π-зв’язків у бензолі і дієнових вуглеводнях з спряженими зв’язками.

Якщо в молекулі є два ефекти, то важливо знати їх напрямки паралельний чи антипаралельний. При переході від нітрометану до нітро-бензолу дипольний момент зростає (індукційний і спряжені ефекти однаково напрямлені). При переході від хлорметана до хлор-бензолу дипольний момент хлорбензола менший, ніж у хлорметана. Неподілені електронні пари Сl вступають у спряження з π-зв’язками, і електронна густина зменшується в напрямку бензольного кільця.


Дипольний момент молекул залежить від геометричної ізомерії: цис- і транс-ізомерія.

Молекули в транс-формі завжди мають центр симетрії, тому їх дипольний момент дорівнює 0.

Існування поворотних ізомерів молекул також впливає на їх дипольний момент. Наприклад, у молекулі дихлоретану СН2Сl–CH2Cl. Якщо вважати, що зв’язок С–Н не вносить значного вкладу в дипольний момент молекули, то її дипольний момент можна визначити як суму дипольних моментів зв’язків С–Сl. Зв’язок дипольного моменту молекули залежить від кута повороту груп СН2Сl одна відносно іншої

,
,

φ – кут повороту.


μцис = 3,4D; μтранс = 0.

На величину дипольного моменту дихлоретану впливає температура. Із зростанням температури кількість цис-ізомерів зростає, так як кількість молекул, які можуть перейти через потенціальний бар’єр, зростає.

Зрозуміло, що у випадку дихлоретану завжди є суміш цис- і транс-ізомерів. Тоді

μ2 = с1μ12 + с2μ22,

c1 – концентрація транс-форми, с2 – концентрація цис-форми.

Якщо μ1 = 0, тоді

μ2 = с2μ22;

.

= K(T); Kpiв =
,

K – стала Больцмана; ΔЕ – величина потенціального бар’єру і

ΔЕ = –KTlnKрів.

По температурній залежності дипольного моменту газу можна знайти концентрації ізомерів, через них знайти Kрів, а черех Kрів – величину потенціального бар’єру, що відділяє два ізомери.

Вивчаючи дипольні моменти молекул, які здатні до поворотної ізомерії, можна одержати відомості про поворотну ізомерію. З дипольних моментів можна судити про геометрію молекул і їх симетрію. Але вирішити однозначно про геометрію молекули, виходячи з дипольних моментів, неможливо, можна лише припустити ту чи іншу форму молекули.

Поляризуємість молекул. Тензор поляризуємості. Якщо речовину помістити в електричне поле (Е), то заряджені частки молекули (електрони і ядра) зміщуються з своїх положень у напрямку силових ліній прикладеного поля. В молекулах виникає індукований дипольний момент, величина якого пропорційна напрузі прикладеного поля: μ2 = α · Е, α – коефіцієнт пропорційності, який характеризує поляризуємість молекули.

тобто поляризуємість молекули вимірюється в одиницях об’єму.

α показує – наскільки сильно деформується електронна оболонка молекули під дією зовнішнього електричного поля. Різні молекули при одному і тому ж значенні Е будуть мати різні α.

α буде скалярною величиною лише в тому випадку, якщо під дією сил електричного поля зміщення електронної густини молекули у всіх трьох взаємно перпендикулярних напрямках буде однаковим.

В загальному випадку зміщення електронної густини у трьох напрямках, як правило, різне: найбільше зміщення електронної густини спостерігається у тому напрямку, який співпадає з напрямком прикладного поля. У загальному випадку:

де x, k, y i z – цілі величини.

αik може бути записане у вигляді тензора

,

αхх – зміщення електронної оболонки вздовж осі х, якщо напруга прикладена по осі х;

αху – зміщення по осі х, якщо поле прикладене по осі у;

αхz – зміщення по осі х, якщо поле прикладене по осі z.

Найбільшу величину мають діагональні складові тензора. Крім того, доведено, що компоненти тензора, які симетрично розташовані відносно діагоналі, рівні між собою: αху = αух; αхz = α; αуz = α – симетричний тензор. Такий тензор можна звести до діагонального вигляду

.

Якщо всі три діагональні складові тензора не рівні один одному, то геометричне зображення тензора поляризуємості являє собою 3х-осьовий еліпсоїд. Це випадок анізотропної молекули, яка відноситься до груп низкьої симетрії.

Якщо два з трьох діагональних складових рівні, то геометричним образом такого тензора буде двохосьовий еліпсоїд обертання. Такі молекули відносяться до груп середньої симетрії.

Якщо всі три складові діагонального тензора рівні між собою, тоді еліпсоїд обертання переходить у кулю, і поляризуємість стає скалярною величиною. Такі молекули відносяться до груп вищої симетрії.

Поведінка речовин в електричному полі. Розглянемо явища, які виникають у речовині при розміщенні його в зовнішньому електричному полі. Поля можна розділити на електростатичне, для якого напруга стала, і змінне, для якого напруга з часом змінюється за певним законом. Поведінка речовин у постійному і змінному полях відрізняється.

Розглянемо поведінку речовин у постійному полі.

Якщо речовину помістити в зовнішньому полі, то в речовині виникає явище поляризації – заряджені частинки – ядра і електрони кожної молекули зміщуються з своїх рівноважних положень в напрямку силових ліній поля. В молекулі виникає індукований полем дипольний момент, який буде пропорційний напрузі прикладеного поля: μінд = α · Е, α – називається поляризуємістю, вимірюваною в одиницях об’єму (см3):

. (1)

Якщо одиниця об’єму містить N атомів (число Лошмідта), то можна ввести поняття поляризації речовини:

(2)

(добуток дипольного моменту окремої молекули на число молекул).

Підставимо у (2) замість με його значення, тоді

Р = NαE. (3)

Полярні молекули речовини мають нескомпенсовані електричні заряди, тому напруга поля в речовині не буде рівна напрузі зовнішнього поля.