Смекни!
smekni.com

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов (стр. 4 из 9)

В случае распределительной хроматографии коэффициент распределения вещества и его Rf связано соотношением:

где Sп и Sн - площади поперечных сечений подвижной и неподвижной фазы.

Как мы видим, коэффициент распределения, при постоянном отношении Sп/Sн есть величина пропорционально зависящая от Rf , и может быть определена через него. [3]

1.4.13 Цветные реакции

Цветные реакции в тонкослойной хроматографии используются чрезвычайно широко. Они служат не только для определения местоположения разделенных компонентов (обработка серной кислотой, парами йода), но и определения как класса веществ, так и идентификации (при наличии индивидуальных реакций). При совпадении всех качественных реакций и совпадении полученных значений Rf вещества в трех различных системах с литературными данными, вещество идентифицировано. [3]

1.4.14 Сравнение со свидетелем

При проведении исследований веществ с предполагаемым составом, применяют метод хроматографирования со свидетелем - известным веществом. Этот метод используется кода трудно выдержать условия хроматографирования, нет литературных данных Rf для данной системы или адсорбента, использование градиентного метода и т.д. Да и при проведении цветных реакций можно сравнить не только цвета, но и оттенки исследуемых веществ и свидетелей, что также немаловажно. [3]

С другой стороны этот метод требует дополнительных расходов на свидетели.

1.4.15 Физико-химические методы идентификации

Прелесть тонкослойной хроматографии состоит в том, что после хроматографирования каждое разделенное вещество можно в дальнейшем исследовать другими методами гораздо проще. И дело тут не в том, что другие методы хроматографирования не могут этого. Дело тут в сложности выделения и материальных затратах на специальные приспособления, у которых только одна задача - выделить вещество.

В тонкослойной хроматографии есть только одна трудность - снять слой сорбента и вымыть из него вещество. В дальнейшем можно его исследовать с использованием ИК и УФ-спектрометрии, рентгено-структурными методами, ЯМР и т.д.

Поэтому, используя тонкослойную хроматографию для разделения смесей, можно не только исследовать каждый компонент различными методами, но и наработать небольшое количество, в том числе и для свидетелей. [4]

1.4.16 Методы количественного анализа

Количественный анализ в тонкослойной хроматографии имеет несколько видов, характеризующий каждый этап развития метода. И хотя некоторые методы можно применять только как полуколичественные, они до сих пор применяются на практике.

Метод визуального сравнения. Как говорилось выше, интенсивность окраски пятна и его размер от количества хроматографируемого вещества. Поэтому визуальное количественное определение построено на нескольких приемах.

Метод разбавления. Этот метод заключается в том, что для каждого вещества определяют предельную концентрацию, при которой вещество не может быть определено хроматографическим методом. При хроматографировании исследуемого вещества поводят разбавление до тех пор, пока оно перестает проявляться на пластинке. Содержание вещества С, определенное таким методом находят по формуле:

C = an

где n – разбавление, а – концентрация вещества, при котором оно не проявляется при хроматографировании.

Метод определения площади пятна. Если наносить одинаковые объемы исследуемых веществ и свидетелей, то получившиеся после хроматографирования площади пятен пропорциональна логарифму концентрации вещества.

S= alnc + b

где а и b - эмпирические коэффициенты, определяемые экспериментальным путем.

Если пятно разделенного вещества имеет резкие границы, то площадь пятна можно определить весовым методом (вырезать пятно и взвесить), замеряется планиметром. Этот метод дает ошибку до 10-15%.

Однако он имеет ряд существенных недостатков. Первый и самый существенный в том, что таким образом можно определять концентрацию окрашенных веществ или имеющих флуоресценцию в УФ области (254, 366 нм). Этот недостаток можно устранить добавлением в сорбент различных люминофоров, то при этом увеличивается погрешность определения. Обработка пластин проявляющими веществами (реактивами) также может быть использована (например использование фильтровальной бумаги пропитанной проявляющим реагентом с последующим контактом с хроматографической пластинкой и дальнейшим определением на ней площади проявленного вещества), но погрешность определения также высока.

Необходимость более достоверного результата количественного определения привела к использованию инструментальных методов.

Метод элюирования. Этот метод заключается в том, что разделенное вещество смывают с сорбента растворителем и определяют его концентрацию уже другими методами - фотометрическими, полярографическими и т.д. Это достаточно точный метод, но только при условии количественного выделения разделенного вещества. Из-за высокой трудоемкости метод используется достаточно редко и неприемлем при большом количестве исследуемых образцов.

Фотографический метод определения заключается в фотографировании пластинок с разделенным веществом и дальнейшим определением степени почернения, с использованием десинтометров.

Радиографический метод аналогичен фотометрическому, только с той разницей, что определяется почернение пластинки, вызванное излучением разделенного вещества. Этот метод используется только при определении веществ с мечеными атомами.

Фотодесинтометрический метод может быть использован без выделения вещества с пластинки и основан на определении не только площади пятна, но и его интенсивности.

Это наиболее точный метод определения концентрации веществ, так как позволяет при использовании калибровочных графиков, проводить достаточно точные количественные определения всех разделенных веществ (до 2-10%) непосредственно на пластинке за короткий промежуток времени.

Неудивительно, что при развитии тонкослойной хроматографии, применение десинтометров увеличивается, чувствительность и, следовательно, точность определения концентрации разделенных веществ повышается и приближается к точности высокоэффективной жидкостной хроматографии. [Алесковский В.Б., Бардин В.В., Булатов М.И. Физико-химические методы анализа. Практическое руководство.- Л.: Химия, 1988. - 376с.]

1.4.17 Способы проведения тсх

Подготовка пробы является очень ответственной операцией в ТСХ. Размывание в ТСХ в первую очередь связано с качеством нанесения стартовой зоны образца.

Выбор растворителя и способы нанесения пробы

К растворителю, из которого пробу наносят на слой сорбента, предъявляют следующие требования: полная растворимость в нем всех компонентов пробы; относительная летучесть (для быстрого удаления с пластины перед началом разделения); низкое значение Rf (при использовании полярных растворителей, в которых Rf разделяемых веществ близко к 1, пробы хроматографируются непосредственно при нанесении, что искажает форму стартового пятна и может влиять на Rf, особенно при ТСХ в менее полярных элюентах); хорошая смачиваемость слоя (важно для ОФТСХ).

Стартовая зона должна быть по возможности минимальной, в особенности для ВЭТСХ. Слишком высокая концентрация вещества в стартовом пятне может замедлить растворение пробы при элюировании.

Для нанесения проб используют стеклянные платино-иридиевые капилляры, микропипетки, шприцы, а также специальные дозирующие устройства, например, платино-иридиевые капилляры с максимальным объемом дозирования 22 нл на 1 м длины. При отборе одной и той же пробы капилляром воспроизводимость введения пробы составляет ±0,7% от ее объема.

При нанесении вязких проб можно нагревать пластины или подсушивать их феном для непрерывного испарения растворителя. Использование двухфазных пластин с предадсорбционным слоем снимает многие проблемы. На границе двух сорбентов зона сжимается в виде узкой полосы независимо от качества нанесения стартового пятна (рис. 2).

Рис. 2. ТСХ смеси красителей на двухфазных пластинах с предадсорбционным слоем.

Рис. 3. Последовательность операций при нанесении образца контактным способом

Пробу можно сконцентрировать в узкую стартовую зону при погружении пластины в растворитель, для которого значения Rf всех компонентов близки к 1, и пропусканием его несколько выше зоны нанесения пробы, после чего элюирование прекращают, а пластину быстро высушивают. Подобную операцию повторяют несколько раз. Для вязких и разбавленных проб эффективен способ контактного нанесения. На рис. 3 показана последовательность операций нанесения пробы по этому методу:

а) над отверстием в металлической пластине помещают смоченную перфторкосином этиленпропиленовую пленку, которая не смачивается никакими растворителями;

б) с помощью вакуумирования пленка плотно прижимается к пластине и слегка втягивается в отверстие, образуя углубление;

в) в углубление вносят пробу, которая остается там в виде шарообразной капли, так как не смачивает пленку;

г) растворитель испаряют, подсушивая сверху феном, пока шарик не уменьшится до нужного размера;

д) пластину помещают слоем вниз на пленку над пробой и, заменяя вакуум легким давлением, переносят на нее пробу.