Смекни!
smekni.com

Транспортные процессы и гетеропереходы в твердофазных электрохимических системах (стр. 2 из 6)

Основные положения диссертации изложены в 56 публикациях, наиболее важные из которых приведены в автореферате.

Объем и структура работы

Диссертационная работа состоит из введения, 7 глав, основных выводов и заключения. Изложена на 302 страницах машинописного текста, включая 129 рисунков и 29 таблиц. Список цитируемой литературы содержит 335 наименований.

Основное содержание работы

Во введении приводятся обоснование актуальности выбранной темы, цель и задачи работы, рассматриваются научная новизна и практическая ценность полученных результатов, дается содержание основных положений, выносимых на защиту.

В первой главе систематизированы и представлены наиболее характерные суперионные проводники. Рассмотрены теоретические основы метода исследования гетеропереходов с суперионными проводниками - метод импеданса, метод вольтамперометрии, методы измерения электронной и дырочной проводимостей. Критически разобраны известные методы синтеза и выращивания монокристаллов. Сделан вывод, что перспективной системой для выращивания чистых и совершенных монокристаллов Ag4RbJ5 может быть система MJ-AgJ-СН3СОСН3. Проведен анализ известных результатов исследования ионной проводимости, диффузии, термодинамических свойств суперионных проводников. Отмечено, что подавляющее число исследований выполнено на поликристаллических образцах, чистоту и фазовый состав которых в большинстве случаев не определяли. Глава завершается обсуждением основных направлений исследования и выбором объектов.

Во второй главе приведено описание методов исследований суперионных проводников, гетеропереходов. Приводятся результаты исследования систем для получения монокристаллов. Описан способ получения монокристаллов.

Для изучения системы и идентификации кристаллизующихся фаз измеряли температурные зависимости растворимости и плотности раствора (метод взвешивания кварцевого эталона в растворе). Для идентификации кристаллизующихся фаз были применены визуальный политермический анализ в малых объемах, рентгенофазовый анализ (ДРОН-2), дифференциально-термический и термовесовой анализы (дериватограф Q-1500D). Изучены: огранка кристаллов (гониометр ZRG3), плотность кристаллов (метод гидростатического взвешивания в толуоле). Для выращивания чистых кристаллов разработаны методы очистки AgJ и смеси RbJ-AgJ. Для определения чистоты и состава кристаллизующихся фаз разработаны методы определения AgJ и J2 в составах RbJ-AgJ.

Спектры поглощения изучали с помощью двухлучевого спектрометра «Specord UV-VIS» и спектрофотометра «СФ-16», тепловые эффекты измеряли дифференциальным сканирующим калориметром «DSC-III» и вакуумным адиабатическим калориметром. Для возбуждения люминесценции использовали импульсный лазер ЛГИ-21 (337 нм). Исследование вращения плоскости поляризации проводили с помощью спектрополяриметра, позволяющего определять угол с точностью 0,1°.

Эффективную концентрацию иода в кристаллах определяли методом экстрагирования (растворитель - четыреххлористый углерод).

Исследование процессов диффузии меченых атомов

Измерения активности исследуемых образцов и снятых слоев проводили с помощью одноканального пересчетного прибора ПС02-2еМ и унифицированного сцинтилляционного блока детектирования типа БДБСЗ-leM с кристаллом NaJ(Tl). Радиоактивный препарат наносили в виде раствора, идентичного ростовому раствору, но включающего в себя Ag или,31J. Слои снимали шлифованием.

Концентрацию центров окраски в тонких слоях, при диффузионных исследованиях, определяли с помощью микрофотометра МФ-2. При исследовании интегральной оптической плотности - на спектрофотометре СФ-4.

Измерения импеданса

Измерения частотных зависимостей R, С гетеропереходов проводили с помощью моста переменного тока Р568 в диапазоне 0,04...100 кГц. Колебания температуры в измерительной ячейке не превышали ±0,01 К. Анализ частотных зависимостей R, С импеданса проводили на основе модели релаксации двойного слоя с помощью графоаналитического метода и методом оптимизации.

Метод оптимизации

заключается в компьютерном подборе эквивалентных схем и минимизации нормированной функции ошибок методом сопряженных градиентов и методом Ньютона (табличный процессор Ехсе1). Применялись программы, созданные на языке «Паскаль» и основанные на симплексном методе Нелдера - Мида и на методе Хука - Дживса, отслеживающие локальные и основной минимумы.

Исследования методом потенциодинамической вольтамперометрии проводили с помощью системы, позволяющей автоматизировать работу промышленного потенциостата. В состав системы вошли потенциостат ЕР-21, персональный компьютер, аналого-цифровой и цифроаналоговый преобразователь ЕТ1050 (АЦП-ЦАП).

Измерения ионной проводимости проводили 4 - контактным методом на постоянном токе. В качестве источника постоянного тока (гальваностата) использовали универсальный прибор В7-16А в режиме

10 измерения сопротивления. Причем, на пределах xlOOO, xlOO, xlO, xl через исследуемый образец протекал ток 1; 0,1; 0,01 и 0,001 мА соответственно.

Разработка технологии получения монокристаллов Система RbJ-AgJ-CI-bCOCHi исследована в температурном интервале 294...335 К. При температуре 330,7 К в растворе обнаружен фазовый переход, при котором температурный коэффициент растворимости меняет знак (рис.1). Ниже 330,7 К энтальпия растворения отрицательна (-21,7 кДж/моль), выше 330,7 К положительна и равна 75 кДж/моль. В точке перегиба растворимость и плотность раствора максимальны (А = 165,5%, р = 1,68 г/см3).

Фаза III идентифицирована как Rb2AgJ3. Кристаллы Rb2AgJ3 относятся к ромбической сингонии. Параметры элементарной ячейки: а = 20,0 A, b = 10,3 А, с = 4,9 А. Плотность 4,34 г/см3. Ширина запрещенной зоны ~ 3,95 eV. Температура плавления 578 К.

Фаза II идентифицирована как Ag4RbJ5. Монокристаллы Ag4RbJ5 относятся к кубической сингонии. Параметр элементарной ячейки: а =11,24 А. Рентгеновская плотность для четырех формульных единиц равна 5,38 г/ем3, совпадает с плотностью, определенной гидростатическим взвешиванием. Термограмма при нагревании фиксирует один эндотермический эффект при 503 К, который соответствует температуре плавления Ag4RbJ5.

Температурный интервал, при котором можно получить кристаллы Ag4RbJ5, узок (~276 К), поэтому выращивание монокристаллов

проводили в - изотермических условиях при 331...332 К. Скорость роста ~ 0,3 мм/сут. Рост проводили на кристаллизационной установке.

Термодинамические характеристики.

На рис.4 представлена температурная зависимость СР(Т) в интервале температур 10О-250К. Видны два узких максимума при температурах TV = 120.55К и Т2 = 208.26К, соответствующих у-»Р и р-»а переходам. При температуре Т|=120.55К (Р - переход) теплоемкость достигает значений - 2510 Дж/моль К, затем резко падает до величины 258 Дж/моль. К, превышая значение СР(Т) до перехода на 13 Дж/моль. К. В интервале температур 122-180К значение теплоемкости растет линейно с температурой по закону Ср(Т) =258+0.565 (Т - Т,) Дж/моль.К.

Выше температуры 180К начинается нелинейный рост СР(Т), и при Т2 = 208.26К теплоемкость достигает максимального значения - 2510 Дж/моль К, а затем в интервале Т2+0.74К падает до постоянного значения 292 Дж/моль. К, сохраняя его до 305К.

Проведенные квазистатические измерения СР(Т) в области фазовых переходов со скоростями нагрева 0.17 К/мин показали, что при Т) и Т2 фазовые переходы имеют скрытую теплоту перехода, равную 66.15 и 97.78 Дж/моль соответственно, причем при у->р-переходе скрытая теплота выделяется в два этапа с интервалом 0.4К (37.41 и 28.75 Дж/моль). Проведя графическое интегрирование аномальной части СР(Т) в области Ti и Т2, были оценены полная энергия и энтропия каждого перехода

AQt, = 339 ± 0.5 Дж/моль,AQtz = 565 ± 0.5 Дж/моль,

AS-n = 2.80 ± 0.29 Дж/моль. К, AS-n = 2.93 ± 0.29 Дж/моль. К.,

Общая энергия и энтропия переходов равна соответственно 4163 и 22.7. Дж/моль К.

Однако, как показали технологические испытания, RbAg4Js находится в метастабильном состоянии и может храниться сколь угодно долго в сухой атмосфере при комнатных температурах.

Наблюдения за перемещением границы фаз (рис.5) с одновременной фиксацией температуры позволили также зарегистрировать гистерезис (1,0 ± 0,2) К оптических свойств кристалла.

Исследование температурной зависимости теплоемкости (динамический режим) при нагревании и охлаждении также указывает на наличие температурного гистерезиса ~1К<ДТ<ЗК. Факт существования температурного гистерезиса позволяет отнести перехода«-»Р к переходам первого рода. При охлаждении кристалла до температуры 208К в нем скачкообразно возникает доменная структура, проявляющаяся в виде системы светлых и темных полос, повернутых друг к другу под углом 120° и перпендикулярных направлениям [ПО], [101], [ОН]. Размер доменов зависит от температуры: при понижении температуры - увеличивается, а при нагревании - уменьшается. Субдоменная структура, возникающая в кристаллах, претерпевших большое число фазовых переходов сопровождается образованием трещин, которые приводят к разрушению кристалла.

Симметрия монокристаллов Ag4RbJ5 описывается энантиоморфными пространственными группами Р4332 (О6) и P4t32 (О7). Отсутствие центра инверсии в этих группах предполагает наличие эффекта вращения плоскости поляризации. Дисперсия угла вращения плоскости поляризации измерена в интервале 435...691 нм и для угла вращения плоскости поляризации получена зависимость