Смекни!
smekni.com

Турбидиметрический и нефелометрический методы анализа объектов окружающей среды (стр. 6 из 7)

Приборы для работ в широком диапазоне значений мутности Приборы для работ в широком диапазоне значений мутности Рисунок 12 иллюстрирует еще один подход к промышленной турбидиметрии. Метод поверхностного рассеяния - Surface Scatter® - использован в приборах Surface Scatter® и Surface Scatter SE (для агрессивных сред), разработанных для работы в широком диапазоне. Патентованная конструкция полностью исключает контакт между пробой и оптическими узлами прибора.

Источник света и детектор смонтированы над корпусом турбидиметра и, таким образом, изолированы от пробы. При таком расположении оптических узлов им практически не требуется обслуживание. Проба попадает в центр корпуса, поднимается вверх и, переливаясь через стенки, уходит в сток. Скорость потока контролируется, и перетекающая жидкость образует оптически ровную поверхность.

Луч света падает на поверхность под острым углом. Попадая на частицы, свет частично рассеивается, преломляется и отражается. Не рассеявшийся свет преломляется и уходит вниз, где поглощается, или отражается от поверхности и поглощается стенками корпуса. Рассеянный свет регистрируется фотодетектором, а сигнал детектора поступает в управляющий модуль. С ростом мутности уменьшается количество пробы, освещаемое падающим светом, что изменяет длину оптического пути, компенсируя высокую мутность и позволяя прибору работать в диапазоне в почти шесть порядков - от 0,01 до 9999 NTU.

В дополнение к преимуществам изолированной оптики, для того чтобы уменьшить потребность в обслуживании, применены трубки большиого диаметра, чтобы предотвратить засорение при работе с мутными образцами. Наклоненный корпус турбидиметра служит ловушкой для оседающих частиц, которые могли бы вносить ошибку в измерения, а слив внизу позволяет периодически очищать прибор от скопившегося осадка. Если твердых частиц очень много, то слив можно оставить открытым, увеличив расход жидкости, чтобы постоянно вымывать осадок из прибора.

Турбидиметр для промывных вод

Избыточная промывка фильтров приводит к огромным потерям воды. Специально для контроля воды, которой промываются фильтры, разработан Турбидиметр Back-Wash (рис. 13). Прибор может работать в широком диапазоне значений мутности.
Рисунок. 13 Турбидиметр BackWash

Специальный датчик погружается в емкость с водой, что обеспечивает быстрое получение данных о прозрачности промывной воды. Для измерений луч светодиода проходит через непрерывный поток жидкости, текущий через центр детектора. Проходящий свет попадает на регистрирующий фотоэлемент. Взвешенные частицы поглощают и рассеивают свет, уменьшая количество света, попадающего на детектор. В начале цикла количество проходящего света принимается за 100%, что соответствует чистой воде, используемой для промывки фильтров. Когда вода загрязняется смытыми с фильтра частицами, пропускание света резко падает. Когда осадок смыт с фильтр, вода становится чистой и пропускание света возрастает. Сравнивая количество проходящего света со значением, полученным для чистой воды, можно определить, когда фильтр промыт. Таким образом, можно значительно сократить время, затрачиваемое на промывку фильтра и снизить потребление воды до минимума, достигнув максимальной эффективности промывки фильтра.

Принципы работы мутномеров

Для регистрации рассеянного света используются турбидиметрические системы, работающие по различному принципу:

1. При высоком и среднем содержании взвешенных частиц (от 1 г/л до 4000FTU или 250 г/л) используются датчики InPro 8050, InPro 8100, InPro 8200, соединительный оптоволоконный кабель и трансмиттер Trb 8300. Источник света установлен непосредственно в трансмиттер и излучает свет с длиной волны, лежащей в ближней ИК области — 880 нм. Использование света такой длины волны позволяет пренебречь окраской среды. Данный свет по оптоволоконному кабелю через турбидиметрический датчик проецируется в измеряемую среду и рассеивается во всех направлениях взвешенными частицами.

Отраженный под углом 180° свет регистрируется датчиком (InPro 8050 или InPro 8100) и по тому же оптоволоконному кабелю от датчиков поступает в трансмиттер, в котором установлен фотодиод, преобразующий световой поток в электрический ток. Величина тока пропорциональна концентрации частиц в среде и отображается на ЖК дисплее в заданных единицах.

Преимущества метода измерения по отражению света

Для работы в среднем диапазоне определения используется двухволоконная система (InPro 8200). По одному волокну происходит проецирование света в среду, по другому — регистрация отраженного света. Для минимизации ошибок результатов измерений рекомендуется устанавливать датчик на расстоянии не менее 10 см от стенок трубопровода или реактора.

Этот метод позволяет получать линейную зависимость сигнала от концентрации взвешенных частиц, по сравнению, например, с абсорбционным методом. Использование специальной калибровочной насадки CaliCap дает возможность проводить настройку системы с использованием специальных стандартов в сосудах небольшого размера.

2. Для работы в нижнем и среднем диапазоне концентрации (до 400 FTU или 1,0 г/л) используются мутномеры, состоящие из датчиков InPro 8400, InPro 8500 и трансмиттера Trb 8300 F/S.

Конструктивно эти датчики состоят из источника света и одного или двух приемников света. Свет проходит через специальные сапфировые окна, расположенные у источника и приемников света.

Принцип работы датчика 8400

В основе метода лежит «принцип компенсации измерения» — определение отношения величин светового потока, рассеянного частицами под углом 12°, к потоку нерассеянного света, прошедшего через раствор (см. рисунок выше). Для разделения этих световых потоков и их раздельной регистрации служат два фотодатчика и специальная линза. Чем выше концентрация взвешенных частиц, тем больше поток рассеянного света по сравнению с нерассеянным. По отношению этих потоков судят о концентрации взвешенных частиц. На этом принципе основано действие датчика 8400.

Принцип работы датчика 8500

Кроме того, данный метод измерений позволяет оценить распределение взвешенных частиц по размерам. Обнаружено, что для частиц размером более 0,3 мкм наибольшая интенсивность рассеянного света регистрируется под углом 12°. Для частиц размером менее 0,3 мкм интенсивность рассеяния света одинакова практически во всех направлениях. Если при помощи второго приемника света регистрировать свет, рассеянный под углом 90°, и сравнивать его с потоком, рассеянным под углом 12°, то можно оценить и распределение частиц по размерам в анализируемом растворе (см. рисунок ниже). Максимум информации можно получить, наблюдая за процессом в динамике и контролируя увеличение или уменьшение размеров частиц во времени. Возможность одновременного контроля за количеством и размером дисперсных частиц реализована в устройстве датчика InPro 8500.

Глава 4. Применение турбидиметрии для анализа объектов окружающей среды ГОСТ 4389-72 Вода питьевая. Методы определения содержания сульфатов

ТУРБИДИМЕТРИЧЕСКИЙ МЕТОД

Сущность метода-

Метод основан на определении сульфат-иона в виде сульфата бария солянокислой среде с помощью гликолевого реагента. Гликоль введенный в реакционную смесь при осаждении сульфата бария стабилизует образующуюся суспензию BaSO4 и делает возможным турбидиметрическое микроопределение сульфатов. Чувствительность метода 2 мг/л SO42-

Аппаратура, материалы и реактивы

1. КФК-2

2. Этиленгликоль

Подготовка к анализу

Приготовление основного стандартного раствора сернокислого калия Приготовление гликолевого реагента

Гликолевый реагент—раствор хлористого бария в смеси гликоля и этанола. Для приготовления этого раствора смешивают один объем 5%-вого раствора хлористого бария с тремя объемами гликоля и тремя объемами 96%-ного этанола. Величину рН раствора регулируют соляной кислотой (1:1) в пределах 2?5—2,8 и оставляют на на 1—2 суток. Раствор устойчив в течение 3—6 месяцев.

Проведение анализа

К 5 мл исследуемой пробы или концентрата воды, отобранной в мерный цилиндр вместимостью 10 мл, прибавляют 1—2 мл соляной кислоты (1:1) и 5 мл гликолевого реагента, тщательно перемешивают. После 30 мин экспозиции измеряют оптическую плотность раствора фотоэлектроколориметром, в кюветах l=20мм и светофильтром с длиной волны 364 нм. Исследуемая проба воды с добавлением гликолевого реагента, приготовленного без хлорида бария, является раствором сравнения. Содержание сульфатов находят по калибровочной кривой.

Для построения калибровочной кривой в ряд мерных колб. вместимостью 50 мл вносят 0,0; 0,1; 0,2; 0,4; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,0 мл основного стандартного раствора сульфата калия (0,5 мг SO42- в 1 мл) и доводят объем до метки дистиллированной водой, Приготовленные растворы содержат; 0,0; 1,0; 2,0; 4,0; 6,0; 8,0; 10; 12; И; 16; 18; 20 мг/л S042-. Отмеривают по 5 мл из каждого рас­твора в мерные цилиндры вместимостью 10 мл (или в мерные колориметрические пробирки с отметкой 10 мл).