Смекни!
smekni.com

Удосконалення електрохімічної технології каталітичних покриттів паладієм та сплавом паладій – нікель (стр. 3 из 6)

Поляризаційні залежності відновлення паладію з пірофосфатних електролітів мають дві хвилі в катодній області, з чітко вираженим граничним струмом. Варіювання концентрації пірофосфат - іонів при сталій концентрації паладію характер залежностей не змінює. При підвищенні швидкості розгортки потенціалу (≥ 0,02 В/с) друга хвиля вироджується, що свідчить про зміну механізму електродного процесу. Аналіз характеристичних критеріїв відновлення паладію з пірофосфатного електроліту свідчить, що процес ускладнений хімічною реакцією, що передує стадії переносу заряду. Лінійність залежності lg(j·jd /jd-j) – ДЕ, де jd – гранична густина струму, j – густина струму; ДЕ – зміна потенціалу; підтверджує висновок про змішану кінетику. Координаційне число комплексів, які переважно беруть участь в електродному процесі, становить n = 1,11, що свідчить про відновлення на катоді комплексів виду Pd(P2O7)2-. В той же час передпік на поляризаційній залежності імовірно обумовлений адсорбцією продукту реакції (табл. 2).

При додаванні аміаку та наступному утворенню пірофосфатно – амонійних комплексів паладію геометрія вольтамперної залежності змінюється порівняно з поведінкою паладію в пірофосфатних електролітах: в катодній області реєструється одна хвиля, струм якої значно менше, в порівнянні з пірофосфатним електролітом, що також свідчить про утворення більш міцного комплексу.

Дослідження діагностичних критеріїв кінетики відновлення паладію з пірофосфатно – амонійного електроліту залежно від швидкості розгортання потенціалу свідчать, що процес ускладнений хімічною реакцією дисоціації комплексів паладію.

Порядки реакції за паладій– та пірофосфат – іоном, визначені з концентраційних залежностей lg jп – lgc, становлять 0,52 та –0,96 відповідно. Сукупність наведених результатів дала підстави запропонувати механізми електрохімічного відновлення паладію (ІІ) з пірофосфатного та пірофосфотно-амонійного електролітів (табл. 2).

Таблиця 2

Схема механізму електрохімічного відновлення Pd(ІІ) з комплексних електролітів

Пірофосфатний електроліт Пірофосфатно-амонійний електроліт
,
,

У п’ятому розділі досліджено кінетичні закономірності електроосадження сплаву паладій – нікель з пірофосфатно – аміачного електроліту в розведених розчинах. На вольтамперограмі сплаву паладій – нікель при низьких швидкостях сканування потенціалу (s ≤ 0,005 В/с) фіксується один пік відновлення, якому відповідає зворотний в анодній області. При збільшенні швидкості розгортання потенціалу в катодній області реєструється другий пік при потенціалах, електропозитивних за перший, різниця потенціалів першого Епк1 та другого Епк2 піків становить близько 0,2 В.

Аналіз отриманих вольтамерограм свідчить, що при малих густинах струму швидкість виділення паладію в сплав значно перевищує швидкість відновлення нікелю. Такий висновок повністю підтверджується характером парціальних залежностей. При зміні співвідношення концентрацій сплавоутворюючих компонентів сNi:сPd від 20:1 до 5:1 перший пік стає більш явним, а потенціал піка Епк1 зсувається в бік електронегативних значень більш ніж на 0,25 В.

Рис. 2. Схема електрохімічного осадження сплаву паладій – нікель з пірофосфатно-амонійного електроліту

Підвищення температури електроліту приводить до виродження першого піка в катодній області вже при 40 0С, що свідчить про зменшення ускладнень при виділенні паладію в сплав, таке припущення підтверджується отриманими результатами. В той же час висота другого піку зростає.

Аналіз характеристичних критеріїв відновлення паладію та нікелю в сплав з полілігандного електроліту свідчить, що електрохімічна реакція необоротна та ускладнена хімічною стадією. Значення ефективної енергії активації, розраховане з використанням температурно – кінетичного ме-тоду, становить близько 30 кДж/моль, що підтверджує наявність хімічної реакції в процесі осадження сплаву. На підставі отриманих даних можна припустити наступну схему електрохімічного відновлення сплаву паладій – нікель (рис. 2), в якій ksi, kfi, kbi – константи швидкості електрохімічних, а також хімічних реакцій прямих та зворотних, vds – швидкість поверхневої дифузії.

В гальваностатичному режимі при малих густинах струму нікель в сплав не відновлюється, але зі збільшенням катодної густини струму спостерігається виділення нікелю в сплаві, з максимумом вмісту (42%) при jк = 0,125 А/дм2, подальше підвищення густини струму вміст Ni в сплаві зменшує.

Температурні дослідження вказують, що підвищення температури до 50 °С знижує вміст нікелю в сплаві на 16 % при jк = 0,06 А/дм2. Крім того, незначне підвищення темпера-тури електроліту (t = 30 °С) приводить і к зниженню виходу за струмом (ВС) до 30 %, а подальший ріст температури практично не впливає на вихід за струмом сплаву. Аналіз результатів досліджень осадження сплаву паладій – нікель свідчить, що максимальних вміст нікелю в сплаві при використанні гальваностатічного режиму становить 42% при катодній густини струму 0,125 А/дм2 та співвідношенні концентрації сплавоутворюючих компонентів в електроліті сNi:сPd = 20:1, при цьому вихід за струмом сплаву не перевищує 55 %.

Застосування імпульсного струму дозволяє збільшити вміст нікелю в сплаві із зменшенням тривалості імпульсів (tімп), але в умовах електролізу, коли tімп ≤ 0,005 с, були отримані покриття з декількома відсотками нікелю в сплаві. Вплив шпаруватості імпульсів на вміст нікелю в сплаві зменьшується тим значніше, чим вище амплітуда імпульсного струму. Залежність вмісту нікелю та вихід за струмом сплаву від амплітуди імпульсу при постійній частоті (f = 9,1 Гц) і шпаруватості (Q = 11) також носять екстремальний характер, причому мінімум ВС сплаву й максимум w(Ni) спостерігається при тих самих значеннях jк.

Рис. 3 Вплив параметрів електролізу на вміст нікелю в сплаві паладій – нікель

Нелінійний характер залежностей вихідних функцій від параметрів імпульсного електролізу обумовив необхідність використання 3D графіки (рис. 3) для візуалізації результатів електролізу з наступною оптимізацію його режимів. Вихідні параметри моделі: j – амплітуда імпульсу, А/дм2; f – частота імпульсу, Гц; функція відгуку щ (Ni) – вміст нікелю в сплаві, %. На підставі досліджень було удосконалено режим імпульсного електролізу осадження сплаву паладій – нікель з комплексного пірофосфатно-амонійного електроліту на підкладку з корозійностійкої сталі з варьованим вмістом нікелю в сплаві.

Шостий розділ присвячено дослідженню корозійний стійкості, каталітичної активності отриманих покриттів та розробці технологічного процесу електрохімічного нанесення каталітичних покриттів. Зі збільшенням вмісту нікелю в сплаві значення потенціалу корозії Екор міняється незначно, у той час як величина глибинного показника швидкості корозії kh лінійно зростає з збільшенням неблагородного компонента в сплаві (табл. 3). Цей факт можна пояснити особливостями корозійного процесу, оскільки навіть у кислому середовищі паладій кородує тільки з кисневою деполяризацією, а покриття сплавом Pd – Ni зі змішаною воднево-кисневою.

Таблиця 3

Корозійні характеристики сплаву паладій – нікель

Параметри Вміст нікелю в сплаві, %
0 5 18 41 100
Екор, В 0,458 0,335 0,325 0,350 -0,102
В, В 0,015 0,017 0,019 0,020 0,019
Rр, кОм 117,0 23,0 21,4 15,1 7,5
jкор, мA/м2 1,3 7,0 9,2 13,0 25,6
kh, мм/рік 0,002 0,008 0,010 0,017 0,028

Крім того, швидкість корозії зростає внаслідок перерозподілу зон локалізації анодних та катодних реакцій на поверхні сплаву в порівнянні з чистим паладієм.