Смекни!
smekni.com

Діаграми стану сплавів та їх зв’язок із властивостями матеріалів (стр. 3 из 4)

Межу текучості визначають за формулою:

Gт = Pт / F0 ,

де Pт - навантаження текучості;

F0 - поперечний переріз робочої частини зразка до випробування.

Умовне напруження, яке відповідає найбільшому навантаженню, що передує руйнуванню зразка, називається межею міцності і визначається за формулою:

Gв = Pв / F0,

де Pв - навантаження, що передує розриву зразка.

По відносному видовженні і звуженні оцінюють пластичність металів. Відносне видовження і звуження вимірюють у відсотках (%).

Відносне видовження визначають за формулою:

G = l1 – l0 / l0 · 100(%),

де l1 - довжина зразка після розриву; l0 - довжина зразка до розриву.

Відносне звуження визначають за формулою:

Х=F0 – F1 / F0 ·100(%),

де F0 - початкова площа поперечного перерізу робочої частини зразка; F1 - площа поперечного перерізу після розриву.

Твердість визначають за такими методами: методом Брінелля, методом Роквелла, методом Віккерса.

Метод Брінелля заснований на вдавлюванні твердої кульки у досліджуваний метал. Твердість по Брінеллю розраховується за формулою:

НВ = Р/F

де P - навантаження на кульку; F - величина поверхні відбитка.

Принцип вимірювання твердості по Роквеллу заснований на вдавлюванні у досліджуваний метал стальної кульки Ø = 1,58 мм або конуса з кутом 1200 .

Метод Віккерса дає можливість вимірювати твердість як м¢яких так і дуже твердих металів і сплавів. Він придатний для визначення твердості тонких поверхневих шарів. За цим методом у зразок вдавлюють чотиригранну алмазну піраміду з кутом при вершині 1360.

Крім цього, для визначення механічних властивостей металів використовують такі випробування:

- випробування на ударний згин;

- випробування на втомленість.

Випробування технологічних властивостей найбільш прості. Вони визначають можливість проводити ті чи інші технологічні операції з даним металом або застосовувати його у тих чи інших умовах. З них найбільш поширеними є випробування: на вдавлювання, на перегин, на іскру, зварюваність, ковкість, рідинотекучість та ін.

Для дослідження мікро- і макроструктури, а також визначення вад внутрішньої будови металів, використовують такі методи: макроаналіз, мікроаналіз, рентгеноструктурний аналіз, магнітна дефектоскопія, застосування радіоактивних ізотопів тощо.

2.2 Діаграма стану “залізо-цементит”

Щоб добре розумітися на мікроструктурах залізовуглецевих сплавів, потрібно ретельно вивчити діаграму “залізо-цементит”.

Діаграма стану Fe–F3С (залізо - цементит) репрезентована на рис. 2.2. На вісі абсцис на діаграмі наведений вміст вуглецю і цементиту. Кількість цементиту в сплаві дорівнює 15-кратному вмісту вуглецю.

На діаграмі є вісім однофазних ділянок: на лівій вісі ординат відрізок AN відповідає a(d)-залізу, відрізок NG -g-залізу, відрізок нижче точки G -a-залізу.

Рис. 2.2. Діаграма стану “залізо-цементит”

Оскільки кожна з цих модифікацій заліза взаємодіє з вуглецем, то діаграму стану можна розглядати як триповерхову, що складається з частин І, ІІ, ІІІ (рис. 2). Всі модифікації заліза утворюють з вуглецем тверді розчини проникнення. В області AHN твердий розчин вуглецю в a-залізі - ферит (Ф) (іноді позначають d-твердий розчин). В області AJESG твердий розчин вуглецю в g-залізі - аустеніт (А). В області GSO твердий розчин вуглецю - в низькотемпературній модифікації a-заліза (Ф).

Розчинність вуглецю в a-залізі вельми незначна, при температурі 600°С становить близько 0,01%.

У g-залізі розчинність вуглецю доходить до 2,14%.

Права ордината DFKL діаграми Fe–Fе3С (рис. 2) відповідає цементиту. Область вище лінії ліквідус ABCD відповідає рідкому стану (Р).

Складний вид діаграмми Fe–Fе3С пояснюється тим, що залізо володіє поліморфними перетвореннями у твердому вигляді. Поліморфізм заліза обумовлює і поліморфні перетворення в залізовуглецевих сплавах.

У залізовуглецевих сплавах можливі три перетворення, за яких число ступенів свободи дорівнює нулю, тобто має місце співіснування трьох фаз.

При 1499°С (лінія HJB, Р + d® А) має місце перитектичне перетворення (рис. 2.2).

При 1147°С (лінія ЕСF, Р4,3 ® Е (А + Ц) - ледебурит (Л)) має місце евтектичне перетворення.

У результаті евтектичного перетворення утворюється евтектична суміш аустеніту і цементиту, яка називається ледебуритом.

При 727°С (лінія РSK, А0,8® Е (Ф + Ц) - перліт) має місце евтектоїдне перетворення.

Як результат цього перетворення утворюється евтектоїдна суміш фериту і цементиту, що називається перлітом.

Зіставляючи структури типових залізовуглецевих сплавів (рис. 2.3 і 2.4), їх можна розділити на дві групи: сплави з вмістом вуглецю до 2,14% не мають у структурі евтектики - ледебуриту; у сплавах з вмістом вуглецю вище 2,14% є ледебуритна структурна складова.


Рис. 2.3. Мікроструктури сталей: а - С = 0,05 %, структура Ф + ЦІІ; б - С = 0,15 %, доевтектоїдна сталь, структура Ф + П; в - С = 0,35 % доевтектоїдна сталь, структура Ф + П; г - С = 0,8 %, евтектоїдна сталь, структура - пластинчастий перліт П; д - С = 0,8 %, евтектоїдна сталь, структура - зернистий перліт П; е - С = 1,2%, заевтектоїдна сталь, структура П + ПІІ; (´500)

Відсутність у структурі сплавів (з вмістом вуглецю менше 2,14%) крихкої евтектики робить сплави ковкими і пластичними, що є характерною особливістю сталей. У той же час наявність легкоплавкого ледебуриту в структурі сплавів (з вмістом вуглецю вище 2,14 %) збільшує ливарні якості цих сплавів.

Відповідно до діаграми Fe–Fе3С залізовуглецеві сплави з вмістом вуглецю менше 2,14% називаються сталями, сплави з вмістом вуглецю більше 2,14 % - чавунами. Чавуни, що кристалізуються відповідно до діаграми Fe–Fе3С, відрізняються високою крихкістю. Колір їх злому сріблясто-білий. Такі чавуни називаються білими (на відміну від сірих, ковких і високоміцних чавунів, у структурі яких вуглець в основному знаходиться у вигляді графітової фази) [6].

За кількістю вуглецю і за структурою сталі поділяються на: доевтектоїдні (0,02% < С < 0,8%), структура перліт + ферит (П + Ф); евтектоїдні (С = 0,8%), структура перліт (П); заевтектоїдні (0,8 % < С < 2,14%), структура перліт + вторинний цементит (П+ЦІІ). Типові структури сталей наведені на рис. 2.3 а...е.

За кількістю вуглецю і за структурою білі чавуни поділяються на доевтектичні (2,14% < С < 4,3%), структура ледебурит + перліт + + вторинний цементит (П + Л + ЦІІ); евтектичні (С = 4,3%), структура ледебурит (Л); заевтектичні (4,3% < С < 6,67%), структура ледебурит + + цементит (Л + ЦІ). Типові структури білих чавунів наведені на рис. 2.4 а, б, в.

Рис. 2.4. Мікроструктури білих чавунів: а - С = 3,2% - доевтектичний білий чавун; структура Л + П + Ц; б — структура - ледебурит Л; в - С = 5% - заевтектичний білий чавун, структура Л + ЦІ; (´250)

Структура чавунів залежить від ступеня графітизації, тобто від того, яка кількість вуглецю, що входить до складу чувуну, знаходиться в хімічно зв’язаному стані (Сзв, %) у вигляді цементиту. Крім білих чавунів, за цією ознакою ще розрізняють:

половинчасті чавуни: Сзв > 0,8%; структура чавуну - перліт + + ледебурит + графіт (П + Л + Г);

перлітні сірі чавуни: Сзв = 0,8%; структура – перліт + графіт (П + + Г);

феритно-перлітні сірі чавуни: 0,8% > Сзв > 0,02 %; структура - перліт + ферит + графіт (П + Ф + Г);

феритові сірі чавуни: Сзв = 0%; структура - ферит + графіт (Ф + Г).

Вплив термічної та хіміко-термічної обробки на властивості та структуру сталей є наступним [7].

Термічною обробкою називають процес, що складається з нагріву металу до відповідної температури, витримки його при цій температурі і охолодження з певною швидкістю. При термічній обробці змінюється структура сталі, що веде до зміни її властивостей. Таким чином, шляхом термічної обробки сталі одного и того ж складу можна змінювати її властивості.

Термічна обробка сталі грунтується на здатності заліза змінювати будову кристалічної решітки при зміні температури, а також на різній розчинності вуглецю в кристалічних решітках різної будови [8].

Існують такі види термічної обробки: гартування, відпуск, відпал, нормалізація і хіміко-термічна обробка (цементація, азотування, ціанування).

Найбільші структурні перетворення сталі відбуваються при гартуванні. Від усіх інших видів термічної обробки гартування відрізняється високою швидкістю охолодження. Залежно від швидкості охолодження загартована сталь маєрізну структуру: сорбітну, троститну або мартенситну.

Сорбітна структура складається з суміші фериту і цементиту високого ступеня дисперсності, що приводить до підвищення твердості й крихкості сталі. Під мікроскопом сорбітна структура має вид феритно-цементитної структури, одначе розмір зерен в ній значно менший.

Трооститна структура cкладається також із суміші фериту й цементиту високого ступеня дисперсності. У металографічному мікроскопі трооститна структура проявляється у вигляді дуже темних ділянок. Сталь трооститної структури значно твердіша і більш крихка, ніж сорбітна.

Мартенситна структура сталі значно відрізняється від сорбітної й трооститної структур. Мартенсит є перенасиченим твердим розчином вуглецю в a-залізі. Його кристалічна решітка має значні зміни, що обумовлюють найвищу твердість і крихкість сталі. Під мікроскопом загартована на мартенсит сталь має голчасту структуру.


ВИСНОВКИ

Зв'язок між властивостями сплавів і типом діаграми стану був вперше встановлений М.С. Курнаковим.

По осях ординат діаграм відкладають показники властивостей (границю міцності, твердість, електричний опір та ін.), а по осях абсцис — концентрацію сплаву.

У сплавах, які твердіють за діаграмою стану І типу, в твердому стані міститься механічна суміш вихідних компонентів. Зміна властивостей цих сплавів відбувається за лінійним законом.