Смекни!
smekni.com

Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060 (стр. 9 из 14)

Горизонтальная ориентация частиц микроталька, имеющих чешуйчатую структуру, является наиболее эффективной с точки зрения барьерной защиты от проникновения воды и агрессивных компонентов окружающей среды к субстрату. Ценной особенностью микроталька как наполнителя лакокрасочных систем является способность хорошо смачиваться неводными пленкообразующими веществами, способствовать упрочнению пленок, улучшать адгезию и в определенной степени придавать композиции тиксотропность. Объемная доля микроталька в покрытии ограничивается возможностью нарушения горизонтального расположения его частиц в пленке.

Кальцит обладает малой химической активностью и низкой гидрофильностью, способствует предотвращению растрескивания покрытий, повышает их твердость и прочность. При расчете рецептур грунтовочных композиций исходили из фиксированного соотношения микроталька и кальцита 1:4.

Составы пигментной части были рассчитаны с помощью программы Minitab14.0, разработанной DuPont(Центр технологии и управления качеством). Значения рассчитанных составов пигментной части приведены в таблице 5.6; в таблице 5.7 представлены рецептуры грунтовочных композиций на основе соосажденного манганат (IV) силиката кальция 1:0,1.

Оптимизацию пигментной части грунтовок проводили по схеме, описанной выше. Составы диспергировали до степени перетира 20-30 мкм по прибору «Клин». Покрытия наносили на металлическую подложку (сталь 0,8 КП), подготовленную по методике, описанной в 3 разделе, в три слоя посредством ракеля. Толщина покрытий составляла не более 40 мкм.

Таблица 5.6 – Составы пигментной части, %

№ смеси Манганат (IV) силикат калиция Наполнители Оксид цинка
1 40,00 20,00 40,00
2 30,25 39,75 30,00
3 40,00 60,00 0
4 10,75 59,25 30,00
5 1,00 99,00 0
6 20,50 59,50 20,00
7 1,00 59,50 40,00
8 10,75 79,25 10,00
9 30,25 59,75 10,00

Таблица 5.7 – Рецептуры грунтовок,%

№ п/п ПФ-060 Пигмент Микротальк Кальцит Оксид цинка Уайт-спирит Сиккатив
1 37,5314 13,1060 1,3103 5,6419 13,1060 29,4034 2 от массы лака
2 37,1758 10,1578 2,6696 10,6782 10,0738 29,2448
3 40,1360 11,3152 3,3946 13,5782 0 31,5760
4 36,1140 3,8138 4,2042 16,8166 10,6434 28,410
5 41,5700 0,2580 5,1108 20,4432 0 32,702
6 38,0180 6,5752 3,8168 15,2672 6,4140 29,908
7 34,7648 0,3788 4,4708 17,8832 15,1548 27,3484
8 38,4998 3,3592 4,9530 19,812 3,1250 30,271
9 39,4510 8,9280 3,5270 14,0278 2,9514 31,0348

После изготовления грунтовок и формирования покрытий на их основе полученные образцы окрашенной стали были подвергнуты коррозионным испытаниям (500 часов выдержки в 3%-ном водном растворе хлорида натрия).

В качестве функций отклика использовались значения потенциала стали под покрытием, электрической емкости системы окрашенный металл – электролит, адгезии покрытий и площади подпленочной коррозии.

На рисунках 5.4 и 5.5 представлены результаты исследования изменения значения электрической емкости систем окрашенный металл – электролит; на рисунках 5.6 и 5.7 – хронопотенциометрические кривые, полученные в результате исследования окрашенной стали, находящейся в контакте с электролитом.

Значения электрической емкости большинства образцов находятся в пределах значений, характерных для покрытий с высокими барьерными свойствами – до 2,5 нФ, исключение составляют 1, 2 и 9 композиции, значения емкости для которых увеличиваются, что свидетельствует о снижении барьерных свойств этих образцов и возможном развитии коррозионных процессов.

Анализ результатов хронопотенциометрии стали с покрытиями на основе алкидного связующего показывает наличие хороших защитных свойств у составов 1, 3, 4, 5, 6, 8, коррозионный потенциал которых находится в области положительных значений, что свидетельствует о пассивном состоянии металла под покрытием. Хронопотенциометрические кривые остальных образцов лежат в области отрицательных значений потенциала, что характеризует протекание коррозионных процессов на границе металл – покрытие.

Полную характеристику всем составам можно дать только после проведения комплексной оценки металла и покрытия после окончания испытаний, результаты которой приведены в таблице 5.8.

1 – состав 1

2 – состав 2

3 – состав 3

4 – состав 4

Рисунок 5.4 – Изменение значений электрической емкости системы электролит - окрашенный металл


1 – состав 5

2 – состав 6

3 – состав 7

4 – состав 8

5 – состав 9

Рисунок 5.5 – Изменение значений электрической емкости системы электролит – окрашенный металл

1 – состав 1

2 – состав 2

3 – состав 3

4 – состав 4

Рисунок 5.6 - Изменение значений коррозионного потенциала системы электролит – окрашенный металл


1 – состав 5

2 – состав 6

3 – состав 7

4 – состав 8

5 – состав 9

Рисунок 5.7 – Изменение значений коррозионного потенциала системы электролит – окрашенный металл

Таблица 5.8 – Результаты комплексной оценки состояния образцов стали с пигментированными покрытиями, содержащими манганат (IV) силикат кальция

№ состава С, нФ Е, мВ Пузыри,% Площадь коррозии, % Адгезия, баллы
до опыта после опыта
1 4,76 110 3 5 1 1
2 5,68 -54 7 3
3 2,23 185 0 0
4 1,15 90 0 0
5 2,39 8 10 5
6 1,17 60 0 0
7 2,24 -251 20 7
8 0,80 136 0 0
9 4,53 -110 10 3

По данным таблицы можно отметить, что наблюдаемый рост емкости для составов 1, 2, 9 и падение потенциала для составов 2, 7, 9 соответствовали активным коррозионным процессам, что отразилось на площади коррозии.

Таким образом, анализируя совокупность полученных данных, можно сделать вывод, что оптимальными являются составы 3, 4, 6 и 8. Покрытия состава 8 отличаются высокими барьерными, защитными и адгезионными свойствами и даже превосходят штатную Гф – 0119 (таблица 5.9).

Таблица 5.9 – Результаты противокоррозионных испытаний

Грунтовка Адгезия, балл Площадь пузырей, % Площадь коррозии, % Состояние покрытия, балл (ГОСТ 9.407-84)
Состав 8 1 0 0 1
ГФ – 0119 2 1 0,5 2

Заключение

Исследованы основные свойства манганат (IV) силиката кальция; показано, что по техническим характеристикам он удовлетворяет требованиям, предъявляемым к пигментам лакокрасочных композиций.

Изучены защитные свойства данного пигмента; установлено, что манганат (IV) силикат кальция может быть использован в качестве противокоррозионного пигмента в защитных лакокрасочных покрытиях с целью исключения токсичных его аналогов.

Изучено влияние уровня наполнения полимерных композиций синтезированным пигментом на противокоррозионные свойства покрытий на его основе; найдено оптимальное его содержание в алкидных покрытиях.

На основании проведенных исследований разработаны оптимальные рецептуры органоразбавляемых алкидных грунтовок, содержащих в качестве ингибирующего компонента разработанный пигмент. По большинству параметров, характеризующих защитное действие покрытий, разработанные грунтовки превосходят штатную грунтовку ГФ-0119.


Список использованных источников

1 Розенфельд И.Л. Защита металлов от коррозии лакокрасочными покрытиями / И. Л. Розенфельд, Ф.И. Рубинштейн, К.А. Жигалова. – М.: Химия, 1980. 200с.

2 Овсянников С.В. Антикоррозионные лакокрасочные материалы на основе полиуретанов / С.В. Овсянников, Б.Н. Смирнов // Полиуретановые технологии. – 2005. - №3. - С. 24.

3 RolfKnudsen. Влияние атмосферных условий на процесс окраски. The effect of weather on coating application / Knudsen Rolf // Protect. Coat. Update. - 2003. - №1. - С.8-11.

4 Ермилов П.И. Пигменты и пигментированные лакокрасочные материалы / П.И. Ермилов, Е.А. Индейкин, И.А. Толмачев. – Л.: Химия, 1987. – С.200

5 Розенфельд И.Л. Антикоррозионные грунтовки и ингибированные лакокрасочные покрытия / И. Л. Розенфельд, Ф.И. Рубинштейн. – М.: Химия, 1980. 200с.

6 Библиотечное дело: справочник «Неорганические пигменты» / Л.Ф. Корсунский, Т.В. Калинская, С.Н. Степин. – СПб.: Химия, 1992 – 336с.

7 AbdEl-GhaffarM.A. Возможность использования египетских марганцовых руд в качестве пигментов для лакокрасочных материалов. Пигментныесвойствамарганцовыхруд. Evaluation of the Egyptian manganese ore as a pigment and its applications in surface coatings. Evaluation of the Egyptian manganese ore as a pigment / M.A. Abd El-Ghaffar, A.Z. Gomaa, A.A. Salman, H.E. Nasr, 1991. – C. 177-180.

8 GomaaA.Z. Возможность использования египетских марганцовых руд в качестве пигментов для лакокрасочных материалов. Антикоррозионныегрунтовкисиспользованиемегипетскихмарганцевыхруд. . Evaluation of the Egyptian manganese ore as a pigment and its applications in surface coatings. Anticorrosive primers coating the Egiptian manganese ore // A.Z. Gomaa, M.A. Abd El-Ghaffar, A.A. Salman, H.E. Nasr, 1991. – C. 181-183.

9 Физикохимия силикатов и оксидов. - СПб .: Наука, 1998. - 305с.

10 Дедуров И. Г. Общая технология силикатов : учеб. для техникумов /