Смекни!
smekni.com

Изучение и анализ производства медного купороса (стр. 10 из 16)

– максимально возможный срок службы фильтровальных салфеток за счет высокоэффективного устройства для регенерации фильтровальной ткани без демонтажа ее с фильтр-пресса при незначительном расходе воды;

– сравнительно с фильтрами других конструкций фильтр-прессы ЧМ характеризуются в 8…12 раз меньшим расходом электроэнергии;

– минимальный расход промывных жидкостей за счет увеличения эффективности промывок при их равномерном прохождении через всю толщину осадка и отжима осадка мембранами;

– полипропиленовые фильтровальные плиты устойчивы во всех коррозионоактив-ных жидкостях;

– отжимные мембраны позволяют отпрессовать осадок и получить его с минимальной влажностью, что значительно снижает энергозатраты на сушку осадка;

- шторы защищают обслуживающий персонал и производственные помещения при аварийных и нештатных разгерметизациях фильтр-прессов;

– набор осадка на полную толщину камеры, устранение размывов осадка за счет его поджатия мембранами;

– сравнительно небольшой вес и габариты;

– при обслуживании не возникает потребности в высококвалифицированном технологическом и ремонтном персанале.

б) Сушилка

После отделения от маточного раствора и промывки кристаллы медного купороса содержат свободную влагу, которую удаляют для придания готовому продукту свойств соответствующих требованиям стандарта. Для этого предприятие применяет сушилку барабанную, вращающуюся, непрерывного действия. Диаметр сушилки составляет 1200 мм, длина 8 м. Она оснащена приемным бункером, вентилятором типа Ц4–70, калорифером КСК 4–10, шнеком с приводом, ковшевым элеватором ЭЛМ‑160.

Для сушки кристаллов применяют конвекционную сушку, в качестве теплоносителя используют горячий воздух, используя принцип противотока. Нагнетающий вентилятор подает воздух для нагрева в паровой калорифер, затем в сушильный барабан.

Поддерживают и регулируют заданную температуру с помощью вентилей на подаче пара в калорифер. Внутри наклонного вращающегося барабана установлены продольные полки и при вращении барабана готовый продукт пересыпается с них, попадает в горячий воздушный поток, сушится и ссыпается в приемный бункер узла упаковки и пакетирования медного купороса.

Воздух, запыленный мелкими частицами, из сушильного барабана с помощью вытяжного вентилятора протягивают через циклон, где оседает большая часть мелкодисперсных частиц, затем через установку очистки газа очищенный от пыли воздух выбрасывают в атмосферу. Собранную в конвейр под циклоном пыль готового продукта периодически растворяют и направляют в технологический процесс. Данный аппарат выбран в связи с тем, что высушиваемый медный купорос является сыпучим. Благодаря наклону и врашению барабана материал непрерывно перемещается внутри него, минимально измельчается и имеет хороший контакт с рабочими газами. Данная сушилка может работать не только на смеси топочных газов и воздуха, но также и на нагретом воздухе.

в) Центрифуга

Центрифуги данного типа ½ ФГП‑801 К, горизонтальная, пульсирующая, фильтрующая, непрерывного действия, производительностью по осадку 10 т/ч, предназначена для непрерывного разделения суспензий, содержащих твердую фазу в виде крупно и средне измельченных кристаллов.

Конструктивной особенностью центрифуг типа ФГП является консольное расположение ротора с пульсирующим толкателем.

Центрифуга представляет собой фильтрующую машину непрерывного действия с двухкаскадным ротором. Ротор состоит из двух дырчатых обечаек сварной конструкции с днищем, в которых укреплены щелевидные колосниковые сита. Внутри ротора укреплены приемный и защитный конуса. Внутрь ротора подведена питающая труба, закрепленная на кожухе. На приемном конусе установлено уравнительное кольцо, служащее для формирования слоя осадка, на защитном – съемное кольцо, служащее для перемещения осадка вдоль ротора.

Возвратно-поступательное движение толкателя осуществляется от гидравли-ческого цилиндра, поршень которого приводится в движение путем подвода под давлением масла из маслосистемы.

Суспензия по питающей трубе поступает в пространство между питающим и защитным конусами, раскручивается и центробежной силой отбрасывается, равномерно распределяясь на ситах I каскада. Жидкая фаза суспензии проходит через сита в кожух, а твердая накапливается на ситах.

При движении толкателя с обечайкой и ситами I каскада в сторону станины осадок наталкивается на неподвижное съемное кольцо и останавливается, а очищенные сита уходят под кольцо. При движении толкателя от станицы осадок перемещается вместе с ситами, а на очищенные сита поступает новая порция суспензии.

За несколько ходов осадок продвигается по всей длине I каскада ротора и пересыпается на сита II каскада.

При движении толкателя от станины прижимное кольцо сит I каскада наталкивается на осадок на ситах II каскада и перемещает его вдоль ротора к выгрузочному бункеру. При движении толкателя к станице осадок пересыпается с первого каскада на второй.

При перемещении осадка вдоль ротора вначале происходитосновной отжим жидкой фазы, затем просушка, в случае необходимости – промывка осадка и окончательная просушка осадка.

В случае необходимости промывки осадка в ротор вводится труба промывки с форсункой. Положение трубы регулируется в процессе пуско-наладочных работ. Влажность осадка регулируется количеством пульсов толкателя.

3.2 Расчет аппарата растворения колонного типа [9]

Аппарат для растворения металлической меди в сернокислых растворах является нестандартным оборудованием.

Рассмотрим известные из уровня техники решения, касающиеся устройств аппаратов для растворения.

Известна конструкция натравочной башни (Вассерман И.М. Производство минеральных солей. Л.: Госхимиздат, 1962, с. 167 – 169), содержащая корпус, турбинку для орошения, инжектор, патрубок для выпуска раствора, ложное днище.

Недостатком этой конструкции является низкая производительность, отсутствие возможности использования порошкообразных материалов, низкий коэффициент использования кислорода воздуха, как следствие, высокий удельный расход энергоносителей при эксплуатации (пар, воздух), большой выход непрореагированного твердого осадка.

Наиболее близким изобретением по технической сущности и достигаемому результату является устройство для растворения твердых и жидких частиц (Патент РФ № 2048870, МПК6 В 01 F 1/100), которое принято в качестве прототипа. Устройство представляет собой корпус, днище которого выполнено в виде конусообразной винтовой поверхности с вершиной по оси корпуса, снабженный каплеуловителем, расположенным под крышкой корпуса и выполненным из жалюзи переменного диаметра, улиткой, размещенной над корпусом, при этом патрубок подачи газа расположен на верхнем срезе днища, подача газовоздушной смеси и ее удаление осуществляется одним вентилятором.

Однако и это известное техническое решение не может быть использовано для осушествления поставленной задачи – интенсификации процесса, снижения эксплуатационных затрат, повышения извлечения металла в раствор и готовую продукцию, автоматизации технологического процесса.

Недостатки данного устройства:

– невозможность растворения твердого гранулированного материала;

– отсутствие подогрева раствора;

– невозможность поддержания определенной температуры процесса;

– малый объем реакционной зоны;

– низкая производительность.

Анализ описанных выше аналога и прототипа выявил, что ни в одном из них не достигается желаемый результат – создание устройства, позволяющего интенсифицировать процесс растворения металлической меди, снизить эксплуатационные затраты, повысить извлечение металла в раствор и готовую продукцию.

В дипломном проекте предлагаю ввести разработанную и запатентованную конструкцию аппарата для растворения металлической меди в сернокислых растворах с достижением указанного технического результата [9].

Предлагаемый аппарат, как и конструкция-прототип, содержит цилиндрический корпус, выносную циркуляционную трубу, патрубки ввода и вывода раствора.

Устройство аппарата для растворения металлической меди отличается от устройства – прототипа тем, что оно снабжено в нижней части корпуса камерой смешения циркулирующего раствора со сжатым воздухом, определенной от реакционной зоны перфорированной перегородкой; реакционной зоной, соединенной через коническую царгу с пеногасителем, который имеет отстойную зону, образованную цилиндрическим защитным экраном и корпусом аппарата, газоотводящие трубки и диаметрально расположенные для отвода осветленного раствора сливные патрубки, входящие через сливной коллектор в циркуляционную трубу.

Аппарат колонного типа предназначен для получения насыщенного раствора сернокислой меди. Процесс получения насыщенного раствора заключается в нейтрализации свободной серной кислоты, содержащейся в отработанных электролитах. Нейтрализация идет при многократном прохождении по нейтрализационной колонне подогретого электролита смешанного с воздухом через толщу медных гранул снизу вверх. При этом происходит растворение медных гранул и насыщение раствора сернокислой медью.

Аппарат колонного типа изготовлен из нержавеющей стали 12Х18Н10Т и представляет собой колонну (верхняя часть – диаметр 2380 мм, высота 3000 мм, нижняя часть – диаметр 1280 мм, высота 4300 мм, соединенные конической обечайкой). Рабочий объем – 12 м3.

В состав установки входят: нетрализационная колонна и циркуляционная система.

Техническая характеристика.

– Концентрация серной кислоты в электролитах:

начальная 140 – 160г/л

конечная 3 – 6 г/л

– Скорость циркуляции 25 – 30 нм3/час;

– Расход сжатого воздуха 150 – 170 нм3/час;

– Рабочая емкость нейтрализационной колонны 12м3;