Смекни!
smekni.com

Атомно-эмиссионный спектральный анализ (стр. 3 из 4)

Ионизационные помехи являются следствием протекания в пламени нежелательного процесса – процесса ионизации атомов исследуемых веществ:

Mg - ē → Mg+

Процесс ионизации при высоких температурах пламени может идти и дальше до полной потери всех электронов в атоме.

Образовавшиеся ионы также, как и атомы, могут возбуждаться, и, соответственно, излучать поглощенную энергию. Однако, безусловно, характеристики этого излучения будут отличаться от излучения возбужденных атомов.

Это обстоятельство затрудняет выполнение анализа, так как протекание процесса ионизации приводит к снижению концентрации определяемых атомов, т.е. снижает тот сигнал, который необходимо отследить, и на основе которого проводят расчет концентрации.

Этот процесс подавляют введением в анализируемый образец соли такого металла, атом которого отдает электроны легче, чем определяемый атом.

Из доступных солей, которые можно использовать для этой цели – это соли цезия. Они способны генерировать избыток электронов в пламени, и ионизация определяемых более трудно ионизирующихся атомов подавляется, т.е. анализируемые ионы при имеющемся избытке электронов легко переходят в атомы – в их аналитико-активную форму.

Можно подавить ионизацию определяемых атомов путем понижением температуры используемого пламени. Но с понижением температуры также падает и концентрация возбужденных атомов в пламени, что нежелательно.

Таким образом, интересующее нас излучение вызвано переходом электронов из возбужденного состояния в основное, которое определяется разностью энергий электронов на разных уровнях ∆Е.

Естественно, что для различных атомов в подавляющем большинстве ∆Е также различна.

Далее, ∆Е связана с частотой излучения, длиной волны, через скорость света и постоянной Планка уравнением Планка:

Е2 – Е1 = hν =

=
, где

h – постоянная Планка;

c – скорость света.

Зная ∆Е (величины табулированы), можно рассчитать длину волны излучения.

Если ∆Е выражается в эВ, зная ∆Е, можно рассчитать λ.

Например, для кальция ∆Е = 2,95 эВ, тогда

λCa =

= 4200 Å

Если излучение пламени, содержащего кальций, пропустить через монохроматор, а затем сфотографировать, то это изображение будет иметь следующий вид и называться спектром испускания:

Рис. 1. Линейчатый спектр испускания

Естественно, что чем больше возможных электронных переходов, то тем больше число ν.

Такое изображение называют линейчатым спектром испускания, который является, "спектральным отпечатком" атома, потому что по набору этих линий, по их энергиям можно определить, какой атом присутствует в анализируемом растворе. Поэтому спектр – это мощная качественная характеристика вещества.

Существуют некоторые зависимости: чем больше температура, тем больше линий с большими энергиями переходов наблюдается. При невысоких температурах самая интенсивная линия будет определяться переходом электронов из первого возбужденного состояния в основное, например 3р → 3s.

Данный спектр пригоден не только для качественного, но и для полуколичественного анализа с точностью ± 0,5 порядка.

Полуколичественный анализ основан на том, что исчезновение, либо появление тех или иных линий в спектре, зависит от концентрации вещества. При самых низких концентрациях проявляются лишь самые жирные линии, при более высоких концентрациях линий больше, а при самых высоких – намного больше. Имеются таблицы, в которых приведены данные по концентрационным пределам появления либо исчезновения тех или иных линий, и это может быть использовано для полуколичественной оценки концентрации вещества.

Для анализа переходных металлов необходимо более высокотемпературное пламя, так как их возбуждение происходит только при высоких температурах, что обеспечивается применением горючих смесей состоящих из закиси азота и ацетилена, или кислорода и водорода.

4. Количественный атомно-эмиссионный анализ

Количественный атомно-эмиссионный анализ основан на использовании приборов двух типов:

• атомно-эмиссионных фотометров

• атомно-эмиссионных спектрофотометров.

С помощью этих приборов выделяется либо достаточно широкий участок в спектре, содержащий не только определяемую линию, либо более узкий участок спектра, содержащий только одну определяемую линию, и направляется далее на фотоэлемент или светодиод.

Простейшая схема атомно-эмиссионного фотометра (часто его называют пламенным фотометром) имеет следующий вид:


Рис. 2. Принципиальная схема пламенного фотометра

1 – емкости с компонентами горючей смеси, 2 – регуляторы давления,

3 – распылительная камера, 4 – горелка, 5 – исследуемый раствор,

6 – устройство для осушения распылительной камеры,

7 –фокусирующая линза, 8 – входная щель,

9 – призма, разделяющая излучение по длине волны, или светофильтр,

10 – выходнаящель,11- фотоэлектрический детектор,

12 – регистрирующее устройство

К экрану со щелью предъявляются определенные требования: экран должен быть как можно более широким, а щель как можно более узкой, чтобы пропустить без изменения только излучение от центральной части пламени горелки, т.е., чтобы излучение было линейным, либо близким к линейному.

Учитывая то обстоятельство, что Li, Cs в природе мало, а в основном встречаются К, Na, тем более, что различие в длинах волн излучения для К и Na составляет порядка 150 нм, прибор обычно комплектуется четырьмя светофильтрами, которые пропускают тот участок спектра, в котором находится излучение только одного из данного атома: светофильтр на К, на Na, на Li, на Cs. Более сложной системой является атомно-эмиссионный спектрофотометр. Атомно-эмиссионный спектрофотометр имеет одно существенное отличие от пламенного фотометра: содержит монохроматическую систему – трехгранную призму с подвижным экраном. Монохроматическая система в атомно-эмиссионном спектрофотометре выполняет туже функцию, что и светофильтр в атомно-эмиссионном фотометре: выделяет определенный участок спектра, который далее подается через щель на фотоэлемент. Принципиальное отличие этих приборов заключается в том, что монохроматор позволяет выделить гораздо более узкий участок спектра, чем светофильтр: участок шириной уровня2-5 нм, в зависимости от используемой системы. Существуют системы, позволяющие выделить еще более узкий участок спектра – это дифракционная решетка. Если сделать ее очень больших размеров, то можно выделить участок спектра шириной 0,01- 0,001 нм. Благодаря таким возможностям атомно-эмиссионный спектрофотометр позволяет исследовать высокотемпературные пламена, в которых присутствует много линий самых различных атомов. Еще большими аналитическими возможностями обладает многоканальный атомно-эмиссионный спектрофотометр. Его принципиальная схема отличается тем, что после монохроматора в многоканальном атомно-эмиссионном спектрофотометре расположен не фотоэлемент, а диодная линейка, где в разных положениях размещено до 1000 диодов. Каждый из диодов соединен с ЭВМ, обрабатывающей суммарный сигнал и передающей аналитический сигнал (измеряется сила тока от каждого диода).

Рис. 3. Принципиальная схема многоканального атомно-эмиссионного спектрофотометра: 1 – горелка, 2 – входная щель, 3 – призма, 4 – диодная линейка, 5 – регистратор


Выбор системы информации может быть различным. В дуговом и искровом вариантах атомно-эмиссионной спектрофотометрии спектр регистрируют с помощью фотографической пластинки, т.е фотографируют сам спектр. Анализ спектра дает полуколичественную информацию о составе вещества. Полуколичественный анализ вещества по спектру на пластинке основан на том, что интенсивность той или иной линии логарифмически связана с концентрацией вещества.

Количественные методы основаны на суммировании аналитического сигнала – усиленного фототока, полученного от светодиода либо от фотоэлемента, который обрабатывается компьютером, либо в простейшем случае подается на стрелочную шкалу прибора.

Сила фототока связана с концентрацией через коэффициент пропорциональности:

I = k×С

Коэффициент k будет постоянным при постоянных электрических характеристиках системы, а также при постоянных концентрациях аналитико-активной формы в пламени.

• Концентрация аналитико-активной формы в пламени зависит от очень многих параметров:

• от скорости подачи аэрозоля в пламя, которая, в свою очередь определяется давлением газа во всасывающей системе прибора,

• от температуры пламени, т.е. от соотношения горючий газ - газ-окислитель.

Однако, в узкий промежуток времени, например, в течение часа, коэффициент k можно обеспечить постоянным.


5. Спектрографический анализ

После получения спектра следующей операцией является его аналитическая оценка, которую можно проводить объективным либо субъективным методом. Объективные методы можно подразделить на непрямые и прямые. Первая группа охватывает спектрографические, а вторая — спектрометрические методы. В спектрографическом методе фотоэмульсия позволяет получить промежуточную характеристику интенсивности линии, в то время как спектрометрический метод основан на прямом измерении интенсивности спектральной линии с помощью фотоэлектрического приемника света. В субъективном методе оценки чувствительным элементом является человеческий глаз.