Смекни!
smekni.com

Углеводородный состав прямогонных бензинов (стр. 6 из 6)

Метод внутренней нормализации. По этому методу процентное содержание какого-либо компонента в смеси определяют как отношение приведенной площади его пика к сумме приведенных площадей всех пиков:

где S/i— приведенная площадь пика компонента, т.е. произведение площади пика S, на поправочный коэффициент К, учитываются чувствительность детсктора по отношению к данному компоненту S/i=SiKi= htbiKi площадь пика определяют как произнедепие его высоты на ширину на половине высоты пика: Si = hibt.

Метод абсолютной калибровки. В соответствии с этим методом процентное содержание компонента в смеси можно найти с помощью калибровочного графика в координатах: площадь (высота) пика — процентное содержание компонента в смеси. Калибровочные графики строят на основании данных хроматографического анализа искусственных смесей, в которых содержание каждого компонента известно. По хроматограммам определяют параметры каждого пика и строят графики.

Метод внутреннего стандарта. В анализируемую смесь вводят стандартное вещество, пик которого на хроматограмме должен четко отделяться от других пиков.


Концентрацию любого компонента смеси, %, рассчитывают по формуле:

где S/i — приведенная площадь пика компонента; S/ст— приведенная площадь, пика стандартного вещества; Р— отношение массы стандартного вещества к массе анализируемого образца.

Анализ фракции 125—150 °С

Состав этой фракции более сложен, чем фракции н. к. — 125оС, так как в нее входят почти все углеводороды, содержащие 9 атомов углерода. Поэтому данная методика ограничена определением углеводородов, содержащихся в нефтях в относительно больших количествах (сумма их составляет 95—97 % всей фракции).

Исследования бензиновых фракций, выполненные в лаборатории А.А. Петрова, показали, что в нефтях присутствуют в больших количествах термодинамически устойчивые изомеры и что количественное распределение углеводородов подчинено следующим закономерностям:

среди алканов преобладают нормальные и малоразветвленные изомеры (моно- и дизамещенные алканы); тризамещенные и изомеры с третичным углеродным атомом находятся в незначительных количествах. Распределение изомерных алканов с одинаковым числом заместителей соответствует равновесным концентрациям;

геометрические изомеры алкилциклоалканов находятся в равновесных соотношениях, т.е. преобладают наиболее термодинамически устойчивые легкокипящие изомеры.

Этн закономерности и экспериментальные данные по равновесным соотношениям пространственных изомеров циклоалка- нов положены в основу методики определения углеводородного состава бензинов прямой гонки, выкипающих в пределах 125— 150 "С.

Отогнанную на ректификационной колонке фракцию анализируют при температурах 80 и 1060С на той же колонке с неподвижной жидкой фазой — сквалан, на которой анализировалась первая фракция. При указанных температурах снимают хроматограммы фракции бензина 125—150 °С и изомеризата н-нонана.

Изомеризат н-нонана получают по методике, описанной выше. Для определения области элюирования алканов С9 на хроматограмме изомеризата в него добавляют н-октан и н-нонан. Пользуясь приведенной в методике, хроматограммой (рис. 4.5) и данными табл. 4.4, идентифицируют пики алканов на хроматограмме изомеризата. В алкано-цнклоалкановую часть бензиновой фракции также добавляют н-октан и н-нонан, снимают хроматограмму и, сравнивая полученную хромато- грамму с хроматограммой изомеризата, полученной в тех же условиях, идентифицируют пики алканов. Для определения пиков циклоалканов используют данные о порядке выхода углеводородов, приведенные в табл. 4.5 и 4.6.

Как видно из данных табл. 4.5 и 4.6, многие углеводороды в такой

сложной смеси выходят совместно, общим хроматографическим пиком, и часто приходится ограничиваться их суммарным определением. Однако содержание некоторых неразделяющихся компонентов можно рассчитать, исходя из равновесных соотношений их пространственных изомеров. Например, изомерные 1,2,3,4-тетраметилциклопентаны в равновесной при 327 °С смеси находятся в соотношении, % :

транс,транс,транс- 53,7цис,цис,транс-5,8

транс,цис,транс-12,0цис,транс,цис-3,4

транс,транс цис-24,8цис цис,цис-0,3



Зная содержание 1,2,3,4-транс,транс,транс-тетраметилцикло- пентана, который выходит отдельным пиком, можно рассчитать содержание остальных его изомеров, выходящих совместно с другими углеводородами. Присутствие в нефтях цис,транс,цис- и цис,цис,цис -изомеров из-за их термодинамической неустойчивости мало вероятно, и их количеством можно пренебречь.

Арены из фракции н. к. — 200 °С выделяют методом жидкостной адсорбционной хроматографии на силикагеле марки

Таблица 4.7. Относительное время удерживания аренов С6—С10 на разных неподвижных фазах

АСМ. Активность силикагеля, определяемая по бензолу, должна составлять 10—12 ед. Разделение проводят вытеснительным методом, применяя в качестве десорбента этиловый спирт.

Анализ аренов проводят на капиллярной колонке указанного выше размера, скорость газа-носителя 3—3,5 см3/мин. При определении состава ароматических углеводородов широкой фракции н. к. — 200 °С в качестве неподвижных жидких фаз используют полярные вещества, например полиэтиленгликоль (ПЭГ). дибутилтетрахлорфталат (ДБТХФ), трикрезилфосфат и др. В табл. 4.7 приведены значения относительного времени удерживания аренов на двух неподвижных жидких фазах. Идентификацию хроматографических пиков проводят с помощью индивидуальных аренов. Температура хроматографической колонки во время анализа 100 °С.


ЗАКЛЮЧЕНИЕ

Углеводородный состав прямогонных бензинов зависит от возраста нефти, от географического и геологического происхождения нефти, а так же от физических и химических процессов, проходящих при ее зарождении и формировании.


ЛИТЕРАТУРА

1. Орловски М. и др. — Хим. и технол. топлив и масел, 1979, № 6, с. 6—8.

2. Самойлова Н.Н. и др. — Хим. и технол. топлив и масел, 1977, № 7, с. 8—11.

3. Левинтер М.Е. и др. — Хим. и технол. топлив и масел, 1971, № 1, с. 16—20.

4. Магарил Р.3. Теоретические основы химических процессов переработки нефти. М., Химия, 1976. 312 с.

5. Левинтер М.Е. и др. Реконструкция установки каталитического крекинга с пылевидным катализатором типа 1-А. М., ЦНИИТЭнефтехим, 1970. 68 с.

6. Мелик-Ахназаров Т.X. и др. — Хим. и технол. топлив и масел, 1977, № 2, с. 7—10.

7. Макарьев С.В. и др. — В кн.: Производство высокооктановых бензинов. Труды Гроз НИИ. Грозный, 1976, вып. 30, с. 72—76; Нефтепереработка и нефтехимия, 1978, № 11, с. 18—20.

8. Жоров Ю.М. Расчеты и исследования химических процессов нефтепереработки. М., Химия, 1973. 214 с.

9. Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа. 2-е изд. М., Химия, 1977. 424 с.

10. Агафонов А.В. и др. — Нефтепереработка и нефтехимия, № 4, с. 24—26.

11. Станчева 3.С. и др. — Нефтепереработка и нефтехимия, 1976, № 6, с. 1—3.

12. Стехун А.И. и др. — Хим. и технол. топлив и масел, 1977, № 2, с. 10—14.

13. Журавлева Н.Т. — Нефтепереработка и нефтехимия, 1977, № 2, с. 5—6.

14. Бурсиан Н.Р. и др. — Хим. и технол. топлив и масел, 1975, № 4, с. 14—16.

15. Иверсон О., Шмерлинг Л. Новейшие достижения нефтепереработки и нефтехимии. М., Гостоптехиздат, 1960. Т. I. 312 с.

16. Полякова А. Н. и др. — Нефтепереработка и нефтехимия, № 3, с. 7—9.

17. Лесохина Г.Ф., Мухина Т.Н., Ходаковская В.А. Состав и переработка жидких продуктов пиролиза на отечественных установках. М. ЦНИИТЭнефтехим, 1977. 88 с.

18. Ancillott F. е. а. — J. Catal, 1977, v. 46, p. 49—57.

19. Печчи Д., Флорис Т. — Переработка углеводородов, 1977, № 12, с. 31—35.

20. Пигузова Л.И. Высококремнеземные цеолиты и их применение в нефтепереработке и нефтехимии. М., Химия, 1974. 172 с.