Смекни!
smekni.com

Эпитаксиальный рост Ge на поверхности Si(100) (стр. 5 из 7)

При длительной работе ЭЛИ в центре материала, загруженного в тигель, образуется кратер, что может привести к уменьшению скорости испарения и изменению углового распределения потока испаряемого материала. Это приводит к увеличению неравномерности толщины пленки по радиусу подложки. Для выравнивания профиля загруженного материала место расплава временно смещают в разные стороны от центра тигля, оплавляя края кратера и таким образом перемещая испаряемый материал к центру тигля. Смещение места расплава производят изменением ускоряющего напряжения и внешними магнитами, размещенными на стенке вакуумной камеры.

Дифрактометр быстрых электронов

Дифрактометр быстрых электронов предназначен для наблюдения структуры тонких пленок в процессе их нанесения методом МЛЭ, а так же для наблюдения структуры поверхности подложек в процессе предэпитаксиальной подготовки.

Действие дифрактометра основано на формировании дифракционной картины в результате отражения от поверхности исследуемого вещества. Электронный луч, сформированный электронной пушкой и магнитной линзой, попадает на образец и, упруго рассееваясь от него, попадает на люминесцентный экран. Ускоряющее напряжение – 20кВ.

Кварцевый измеритель толщины

Использование кварцевого измерителя толщины позволяет независимо от ДБЭ измерять толщину напыляемой пленки. Физический принцип прибора основан на измерении изменения периода собственных колебаний кварцевой пластинки (резонатора).

Измерительный резонатор, помещенный в вакуумный объем напылительной установки, определяет период колебаний выносного генератора. Собственный период колебаний измерительного резонатора прямо зависит от толщины пленки, осаженной на него. Сравнивая период колебаний выносного генератора с эталонным, можно определить толщину выросшей пленки.

В данной работе использовался цифровой прибор УУП-1 предназначенный для контроля толщины и скорости роста пленок алюминия, поэтому частота внутреннего генератора подобрана так, чтобы изменение показаний прибора на единицу соответствовало толщине пленки алюминия в один ангстрем.

Градуировка прибора для измерения толщин пленок кремния и германия производилась при достаточно низких температурах эпитаксии в условиях двумерно-островкового роста, когда за один период осцилляции вырастает пленка монослойной толщины.

Подготовка образцов

Предэпитаксиальная очистка поверхности кремния является стандартной процедурой, которой пользуются большинство групп занимающихся эпитаксией на кремнии и проводится в три этапа:

1) Химическая очистка:

С термически окисленных (на толщину около 1 мкм) пластин кремния, удаляется оксидный слой SiO2 плавиковой кислотой (HF). Затем пластина равномерно окисляется раствором H2O2+NH4OH+H2O. После такой химической обработки, на поверхности остается тонкий (несколько монослоев) и чистый от примесей слой оксида кремния SiO2. После чего производится тщательная промывка в деионизованой воде и сушка в парах ацетона.

2) Удаление оксида кремния:

Температура подложки устанавливается порядка 800°C. Подпыление поверхности пластины небольшим потоком кремния, восстанавливает двуокись кремния до моноокиси, которая при данной температуре десорбирует с поверхности. Поток кремния в процессе очистки составляет ~5x1013 ат/см2сек. При этом ведется наблюдение дифракционной картины поверхности подложки. При нормальном ходе процесса очистки, по истечении около двух минут начинает исчезать диффузный фон, и увеличивается яркость основных рефлексов. Завершение процесса очистки отличается появлением сверхструктурных рефлексов 7x7 для Si(111) и 2x1 дляSi(100).

3) Рост буферного слоя:

Для сглаживания макронеровностей оставшихся после шлифовки и предыдущих этапов обработки поверхности выращивается буферный слой кремния толщиной порядка 100нм. Температура поверхности устанавливается 700°C, рост осуществляется в течении пяти - десяти минут со скоростью осаждения 1015 ат/см2сек.

Данная система подготовки поверхности производится один раз.

Перед каждым новым осаждением германия пластина отжигалась при температуре 1100°C в течении двадцати минут. Для уменьшения влияния "истории" образца, из-за частичного растворения германия в подложке при отжиге, поверхность заращивалась слоем кремния ~200-300Å. Затем для выглаживания поверхности образец снова отжигался в течении 10 минут, после чего охлаждался естественной теплоотдачей (без принудительного охлаждения) до температуры последующего роста.

Проводя однообразно прогрев, охлаждение и заращивание кремнием перед каждым экспериментом, мы ожидаем минимального изменения исходной поверхности от эксперимента к эксперименту. О чем свидетельствует характерная дифракционная картина (2x1) для Si(100) реконструированной поверхности, наблюдаемая после всех предэпитаксиальных подготовок.

Результаты эксперимента

Исследован методом ДБЭ рост слоев германия на кремнии в диапазоне температур от 250 до 700ОС. На рис.7 представлена характерная дифракционная картина поверхности Si(100), при дифракции быстрых электронов на отражение под малым углом падения.


Рисунок 7. Дифракционная картина чистой поверхности Si(100).

Центральное пятно – рефлекс зеркально отраженного пучка электронов. Три темные полосы, крайние боковые и центральная – тяжи, полученные пересечением обратной двумерной решетки со сферой Эвальда. Между ними находятся сверхструктурные тяжи, возникающие из-за присутствия на поверхности дополнительной периодичности (2x1).

На рис.8 показана характерная дифракционная картина от поверхности псевдоморфной пленки Ge на Si(100). Толщина слоя Ge равна 2 монослоя.

Рисунок 8. Дифракционная картина поверхности Si(100) с пленкой Ge 2 монослоя. Стрелками показаны тяжи от реконструкции (8x2).

При толщине пленки около 1 монослоя (МС) на дифракционной картине формируется сверхструктура (2xN) где N=8-12. Эта структурная перестройка заключается в удалении рядов димеров с поверхности плёнки, что приводит к частичной упругой релаксации напряженного гладкого германиевого слоя, в результате на дифракционной картине появляются дополнительные сверхструктурные тяжи.

При дальнейшем увеличение толщины Ge, из-за роста с толщиной энергии напряжений, с некоторой толщины, пленке становится выгоднее частично снять напряжения за счет увеличения площади поверхности. В результате на поверхности подстилающего слоя начинают образовываться островки("hut" кластеры), когерентно сопряженные в основании с подложкой и имеющие форму четырехгранных пирамид с ориентацией граней типа {105}. В результате, на дифракционной картине тяжи от дифракции на поверхности заменяются на рефлексы от объемной дифракции (на просвет) от островков. Из-за четкой огранки островков, возле объемных рефлексов, появляются линии обусловленные рассеянием на гранях островков (см. рис.8).

Рисунок 9.Дифракционная картина поверхности Si(100) с Ge"hut" кластерами (толщина пленки - 6 монослев). Стрелками показаны линии от рассеяния на гранях островков.

Увеличение толщины пленки Ge приводит к постепенному увеличению размеров "hut" островков, и при некоторой толщине трансформации "hut" островков в "dome". Характерная дифракционная картина от поверхности с "dome" островками показана на рис.9.


Рисунок 10. Дифракционная картина поверхности Si(100) с Ge"dome" островками (толщина пленки - 15 монослев). Стрелками показаны линии от рассеяния на гранях островков.

Расстояние на дифракционной картине между тяжами, в случае дифракции от поверхности или рефлексами, в случае дифракции от объема напрямую отражает значение параметра решетки (~1/a). Следя за изменением расстояния сначала между тяжами, а затем между положением объемных рефлексов можно контролировать "параметр решетки" растущей пленки в плоскости роста. На рис.10 представлено характерное поведение положения тяжей, в точках последующего появления объемных рефлексов.

Стрелками на рисунке показаны места на дифракционной картине вдоль которых снимался профиль интенсивности в процессе роста. Как видно из рисунка, в процессе роста расстояние между тяжами меняется. В начальный момент, когда дифракционная картина образована рассеянием на чистой поверхности кремния, можно считать, что расстояние между тяжами (l0) в этом случае соответствует параметру решетки объемного кремния. Тогда, изменение эффективной постоянной решетки в процессе роста можно вычислить по формуле:

da/a=1-l/l0


Рисунок 11. Изменение профиля интенсивности дифракционной картины вдоль горизонтального направления в процессе осаждения Ge на Si(100). Вверху и внизу показаны начальное и конечное изображение дифракционной картины.

Электронный луч, падающий под малым углом на поверхность (~0.50), проникает в поверхность неглубоко ~1-3 монослоя (для данной энергии электронов – 20кВ), поэтому параметр решетки рассчитанный из дифракционной картины соответствует параметру решетки самых верхних слоев поверхности.