Смекни!
smekni.com

Золотодобыча как процесс извлечения золота из естественных источников (стр. 3 из 5)

Установлено, что традиционные ситовые анализы измельченной руды с последующим определением золота в отдельных классах крупности малоинформативны в отношении реальной гранулометрии золота, а получаемое распределение существенно зависит от выбранной степени измельчения.

Вопреки общепринятым представлениям самородное золото в исследованных рудах срастается не только и не столько с сульфидами, сколько с жильными и породообразующими минералами - кварцем, полевым шпатом, слюдами, апатитом и др. Расположение частиц золота преимущественно в интерстициях агрегатов названных минералов способствует его раскрытию при измельчении руды.

Эксперименты подтвердили, что, несмотря на малые размеры частиц самородного золота, они эффективно извлекаются концентратором Нельсона. При этом для разных руд извлечение составляет от 70 до 90 %. Так, для золото-сульфидных руд среднее количество цианируемого золота достигает 72,9 %, при среднем коэффициенте извлечения - 61,4 %. Для золото-редкометалльно-кварцевых руд эти значения соответственно составили: 94 % и 83,2 %, а для золото-полиметаллических - 82% и 73%. Подобные соотношения характерны и для окисленных руд.

Раскрытие золота для разных руд обеспечивается при тонине помола 60-80 % класса -0,074 мм. Уменьшение тонины помола в некоторых случаях приводит к снижению извлечения.

Опыты по гравитационному обогащению проводили на лабораторном центробежном концентраторе Нельсона KC-MD3 в комплекте с вибропитателем. Первую стадию обогащения проводили на сухом материале, подаваемом в концентратор с помощью вибропитателя. Хвосты 1-й стадии обогащения доизмельчали в стержневой мельнице фирмы KNELSON GRAVITY SOLUTION и возвращали в концентратор в виде пульпы. Хвосты 2-й стадии обогащения вновь доизмельчали в стержневой мельнице и т.д. Количество стадий измельчения составляло в разных опытах от 1 до 3, количество стадий обогащения от 1 до 5, включая контрольную операцию (рис. 11.5.1).

Методика работ выбрана в расчете на моделирование фабричного узла измельчения-классификации, в котором самородное золото, благодаря своим специфическим физическим свойствам задерживается в циркулирующей нагрузке дольше других минералов. Первоначально воздействие мелющих тел вызывает только пластические деформации золота, так что масса его частиц не уменьшается, и при классификации оно поступает в пески гидроциклона и возвращается в мельницу. Точно так же ведут себя не раскрытые сростки золота с другими минералами. Однако при многократном прохождении через мельницу частицы самородного золота испытывают наклеп, приобретают хрупкие свойства и переизмельчаются. Установка центробежного концентратора на песках гидроциклона позволяет извлекать раскрытые частицы золота, не допуская их переизмельчения, и возвращать в мельницу нераскрытые сростки.

В лабораторных условиях трудно организовать эксперимент с непрерывной циркуляцией пульпы и можно только моделировать поведение золота в циркулирующей нагрузке. Моделирование заключается в стадиальном измельчении с повторным обогащением. На практике хвосты обогащения доизмельчаются в мельнице и обогащаются повторно, а затем снова доизмельчаются и т.д. Число стадий измельчения не может быть заранее регламентировано, целесообразность дополнительной стадии определяется достигаемым приростом извлечения.

Рис.11.5.1. Технологическая схема тестирования

Выбор степени измельчения на отдельных стадиях в идеальном случае определяется на основании данных о гранулометрии самородного золота. Не располагая такими данными, в проведенных опытах сначала определяли зависимость гранулометрического состава пробы от времени измельчения. Поскольку в таком эксперименте основное время затрачивается на измельчение и классификацию, параллельно проводили гравитационное обогащение материала полученной крупности и определяли зависимость между ситовым составам твердого в пульпе (временем измельчения) и извлечением золота. В специальных экспериментах определяли влияние величины центробежного ускорения и расход флюидизирующей воды на извлечение золота. При изучении серии проб с близким петрографическим составом (определяющим физико-механические свойства) из одного месторождения тесты на измельчаемость проводили не на всех пробах. В конечном счете было установлено, что практически для всех протестированных проб оптимальну режиму обогащения на концентраторе KC-MD3, соответствуют ускорение 120g и расход флюидизирующей воды 3,5 л/мин. Следует подчеркнуть, что и время измельчения и параметры режима обогащения в промышленных условиях будут другими, неизменными остаются только оптимальная крупность измельчения руды и достигаемое при ней извлечение золота в гравитационный концентрат. Кроме степени измельчения материала, оптимизируемыми параметрами являются ускорение на стенке рабочего конуса, расход флюидизирующей воды, а также нагрузка по исходному питанию.

Извлеченный из рабочего конуса концентрат просматривали на доводочном лотке под бинокуляром, обращая внимание на размер и морфологию частиц самородного золота, а также содержание и степень раскрытия сульфидов. После этого концентрат высушивали, истирали в планетарной мельнице и сдавали на пробирный анализ. Концентраторы от некоторых опытов использованы для экспериментов по цианированию. Хвосты отбирались отсечками из потока пульпы на последней стадии обогащения. Высушенные в муфельной печи хвосты истирали в дисковом истирателе и сдавали на пробирный анализ.

Доводку гравитационных концентратов выполняли вручную на лотке фирмы Keeling (США). Цель этой операции состояла в предварительной оценке возможностей повышения качества концентрата при увеличении массы материала, перерабатываемого за один цикл, и дальнейшей селекции золота из получаемых черновых концентратов.

Продукты обогащения одной навески использовали для изучения минерального состава. Гравитационный концентрат подвергали гравитационно-магнитному фракционированию с последующим минералогическим анализом тяжелой фракции. При минералогическом анализе под бинокуляром из гравитационного концентрата выделяли самородное золото, которое в дальнейшем исследовали в сканирующем электронном микроскопе. После выделения самородного золота тяжелую фракцию использовали для приготовления монтированных шлифов, которые изучались в отраженном свете с помощью микроскопа фирмы Nikon (Япония). Выделенное из гравитационных концентратов самородное золото исследовано в сканирующем электронном микроскопе JSM 5600 фирмы Jeol (Япония). Необходимо напомнить, что использование электронного микроскопа подразумевает приготовление препаратов - дюралевых подложек, обклеенных токопроводящей липкой лентой, на которую под бинокуляром переносят исследуемые частицы. Соответственно, наименьший размер частиц, визуализированных в электронном микроскопе (около 10 мкм), не определяется разрешением микроскопа и не соответствует минимальному размеру частиц золота, присутствующих в концентрате, но целиком зависит от возможности увидеть соответствующие частицы под бинокуляром и перенести их на подложку.

Приводимые в тексте снимки самородного золота в большинстве случаев сняты в излучении вторичных электронов, позволяющем зафиксировать элементы микрорельефа минералов. В тех случаях, когда необходимо было выявить фазовую неоднородность образцов, использовано излучение отраженных электронов, интенсивность которого чувствительна к среднему атомному номеру облучаемой фазы.

Анализ распределения золота в руде, измельченной до 1,7 мм (табл. 11.5.1) показал постоянное обогащение золотом в 1,5-2 раза классов -0,125+0,074 и -0,074 мм во всех пробах. Это позволяло ожидать, что золото преимущественно представлено частицами размером мельче 0,15 мм. В то же время следует иметь в виду, что распределение золота по классам крупности измельченной руды не дает представления о действительном размере частиц золота и существенно зависит от степени измельчения минералов, вмещающих золото, поэтому реальную гранулометрию и морфологию самородного золота исследовали в сканирующем электронном микроскопе.

По данным электронной микроскопии самородное золото в забалансовых рудах Мурунтау представлено главным образом частицами размером от 20 до 150 мкм. По морфологии можно выделить две разновидности золота - количественно преобладающие интерстициальные формы, образованные при заполнении микропустот в интерстициях других минералов и более или менее идиоморфные микрокристаллы, в том числе резко удлиненные. При разрушении срастаний самородного золота с другими минералами (при измельчении руды) микрочастицы последних сохраняются в золоте в виде включений и позволяют судить о минеральных ассоциациях золота. В самородном золоте из руд Мурунтау наблюдаются включения кварца, арсенопирита, апатита, флогопита, углеродистого вещества.