Смекни!
smekni.com

Спектроскопия ЭПР (стр. 3 из 4)

Следует отметить, что совершенно идентичные по форме линии спектры наблюдались авторами статьи при применении в качестве инициаторов окисления столь различных веществ, как азоизобутиронитрил и дицикло-гексилперкарбонат, и при каталитическом инициировании в присутствии стеарата кобальта.

Концентрация радикалов с точностью до 50% совпадала с рассчитанной теоретически и однозначно определялась значением скорости процесса окисления. Из этого следует, что спектр ЭПР обусловлен радикалом цепи окисления, а не влиянием добавок. Весьма удивительно, что, несмотря на то, что измерения проводились в жидкой фазе, усреднение анизотропии g-фактора за счет вращения не наблюдается.

Явно недостаточное развитие работ по применению ЭПР для исследования механизма химических реакций связано, по-видимому, с тем, что до сих пор применением метода ЭПР в химии занимались в основном физики, которые ограничивались установлением строения химических частиц и не чувствовали вкуса к решению кинетических задач. Совершенно ясно, что эта область в ближайшее время будет очень интенсивно развиваться.

Ряд данных о константах скоростей элементарных реакций радика­лов, образующихся при воздействии ионизирующей радиации на твердые тела, будет рассматриваться в следующем пункте реферата.


4. Исследование радикалов, образующихся при облучении органических веществ. Общие замечания о возможностях метода ЭПР в этой области

Применение метода ЭПР позволило дать однозначный положительный ответ на вопрос о том, насколько часто в результате облучения образуются свободные радикалы. Во всех известных случаях использования ЭПР для исследования действия ионизирующего облучения на твердые органические тела были зафиксированы свободные радикалы. Сам факт образования радикалов при радиолизе не может, однако, служить указанием на то, что радикальный механизм является преобладающим. Для доказательства этого необходимо показать, что количество радикалов, образующихся под действием облучения, соизмеримо с полным количеством превратившихся в тех же условиях молекул исходного вещества. К сожалению, в силу весьма большого несовершенства химических методов анализа стабильных продуктов радиолиза такие сопоставления весьма затруднены. Строго говоря, данных по такому сравнению сопоставимых условиях в литературе практически нет.

Качественные сведения о доле радикальных составляющих в общем ме­ханизме радиолиза можно получить, проводя точное измерение выхода радикалов на линейном участке кривой накопления (при сравнительно малых дозах) и сравнивая полученную величину с величинами радиационного выхода продуктов, например, водорода, также в линейной области, но при значительно больших дозах. Если обе величины близки друг к другу, т. е. если суммарный выход молекулярных продуктов Gm не превышает выход радикалов GR более чем в 2—3 раза, то можно полагать, что радикальная составляющая достаточно велика. Иногда качественные заключения такого рода можно делать даже в том случае, если Gm и GR определялись при разных температурах, поскольку Gm обычно не очень сильно зависит от температуры.

На основании всех имеющихся данных можно утверждать, что если радикальный механизм радиолиза органических веществ и не является единственным, то во многих случаях он играет, по-видимому, весьма существенную роль. Поэтому изучение радикалов при радиолизе позволяет пролить свет на механизм если не всех, то во всяком случае основных происходящих при этом процессов.

Прежде всего следует кратко упомянуть об основных приемах, применяющихся при использовании метода ЭПР для исследования радикальной составляющей механизма радиолиза.

Радиационный выход GR определяется обычным путем как число радикалов, образующихся в результате поглощения 100 эв энергии. Как уже указывалось, эти измерения представляют какую-либо ценность только в том случае, если они проводятся не по одной-двум точкам, а по отчетливому линейному участку зависимости [R] = f (D)2. Точность абсолютного измерения GR методом ЭПР не слишком велика и составляет из-за ряда трудно учитываемых ошибок + 40%. В случае сопоставления GR для ряда веществ в идентичных условиях точность измерения повышается и может быть доведена до + 20%. Следует указать также на то, что радиационный выход радикалов иногда очень сильно зависит от строения решетки. Так, при облучении замороженного циклогексана величина GR в различных сериях опытов была близкой к двум величинам — 1,6 и 4,0 12,3.1. Как было показано в лаборатории физической химии Парижского университета и независимо в Институте химической физики в Москве, эти различия являются следствием различий в режиме замораживания образца перед облучением. В случае С8Н12 изменения GR имели место при сохранении СТС спектра. В других случаях изменения GR, обусловленные различиями в структуре решетки, сопровождаются существенными изменениями вида спектра.

При определении GR следует также иметь в виду, что не во всех случаях процессы рекомбинации подчиняются обычным кинетическим законам первого и второго порядка. В ряде систем в процессе размора­живания образцов, облученных при 77° К, в некотором интервале температур наблюдается явление «ступенчатой» рекомбинации. Если выдерживать образец при последовательно более и более высоких температурах, то рекомбинация радикалов происходит при каждой из этих температур, лишь до определенного предела (рис. 6).

рис.6. Кинетика «ступенчатой» рекомбинации радикалов, в н-октиловом спирте при последовательно повышающихся температурах (образец облучен при 950С, D=17 Мрд)

Еще более подробные сведения о строении радикалов, образующихся при облучении данного вещества, можно получить при исследовании монокристаллов. Поскольку в этих случаях все радикалы определенным образом ориентированы по отношению к главным осям кристалла, то, проводя измерения при разных ориентациях монокристалла в магнитном поле спектрометра, мы получаем целую серию различных спектров ЭПР, обусловленных одним и тем же радикалом. При наличии таких данных можно весьма детально сопоставить с экспериментом различные возможные гипотезы о строении исследуемого радикала, и вывод об истинном строении его может быть сделан почти однозначно даже при таких сложных спектрах, как, например, в случае янтарной кислоты и глицерина.

Хотя этот метод весьма точен, область его применения довольно ограничена, поскольку далеко не всегда можно приготовить монокристалл нужного размера. Кроме того, иногда исследователя интересуют радиационные превращения не в кристаллическом состоянии, а при наличии лишь неполной ориентации молекул по отношению друг к другу и даже в отсутствие всякой ориентации.

В последнее время весьма интересные данные были получены при облучении предварительно растянутых полимеров. При этом достигается некоторая преимущественная ориентация вдоль оси вытяжки, и вращение образца в магнитном поле позволяет изучить изменение спектра ЭПР в зависимости от угла. Таким путем удалось однозначно доказать образование аллильных радикалов при облучении полимеров типа полиэтилена и полипропилена и получить интересные сведения о строении лерекисных радикалов в облученном тефлоне.

Другим очень полезным приемом идентификации индивидуального радикала по его спектру ЭПР является сопоставление спектров, полученных при облучении веществ, составляющих тот или иной гомологический ряд или отличающихся друг от друга заменой однотипных атомов или изотопов (например, заменой Н на D в определенных положениях в исходной молекуле).

Основная, идея всех этих методов сводится к тому, чтобы заключение о строении радикала делалось на основании не одного спектра, а нескольких. При этом отличие одного спектра от другого должно определяться известным изменением структуры исследуемых веществ. Надо иметь в виду, конечно, что эти изменения не должны существенно влиять на такие характеристики среды, как ее кристалличность, однородность и т. д.

Некоторые сведения о строении радикалов в облученном веществе можно получить, сравнивая спектр ЭПР, полученный при облучении его при низких температурах, с химическим строением устойчивых продуктов радиолиза того же вещества при более высоких температурах и даже в жидком состоянии.

Все сказанное относится к случаю, когда в результате облучения образуются радикалы одного типа. Так дело обстоит при облучении линейных полимеров типа полиэтилена и тефлона или очень простых веществ СН4, С2Н8 и т. д. Однако уже при облучении поливинилхлорида наблюдается параллельное образование двух радикалов. Еще большее разнообразие можно ожидать при облучении полимеров с боковыми цепями и замороженных низкомолекулярных органических веществ несимметричного строения. Анализ спектра, обусловленного несколькими радикалами, относительные концентрации которых a priori неизвестны, весьма затруднителен. В дополнение к уже описанным приемам можно воспользоваться тем, что подвижность различных радикалов при медленном повышении температуры изменяется по-разному, благодаря чему можно в ряде случаев добиться рекомбинации радикалов, обладающих большей подвижностью. Сопоставляя данные по изменению общего вида спектра, по определению общей интенсивности и используя для анализа остаточного спектра методы, приведенные выше, можно иногда разобраться в довольно сложных спектрах, обусловленных несколькими радикалами.

Необходимо отметить еще одно обстоятельство, существенно облегчаю­щее понимание процессов образования первичных радикалов при радиолизе. Оно состоит в том, что, хотя первичное возбуждение распределяется по массе вещества довольно равномерно (пропорционально электронной плотности), химическое проявление этого возбуждения, а именно первичный разрыв химических связей, локализуется обычно на некоторых определенных участках молекулярной структуры.