Смекни!
smekni.com

Живые полимеры и их роль в работе с человечесим материалом (стр. 1 из 3)

Федеральное агентство по образованию

Уральский Государственный Экономический Университет

РЕФЕРАТ

По концепциям современного естествознания

« Живые полимеры и их роль в работе с человеческим материалом».

Выполнила:

Ерёмкина Т.В студентка гр. РС – 09

Проверили:

Стожко Н.Ю и Малахова Н.А.

Екатеринбург

2010

Оглавление

Введение. 3

Историческая справка. 5

Живые полимеры. 6

БЕЛКИ. 7

Классификация белков по выполняемым функциям. 7

Состав и строение белков. 7

Нуклеиновые кислоты. 10

Полисахариды. 12

ДНК и РНК. 12

Крахмал, целлюлоза. 12

Хитин: полимер для тех из вас, кто любит морепродукты! 12

Природные смолы. 13

Получение. 14

Применение. 14

Микроб - кормилец. 14

В медицине. 14

Заключение. 15

Использованные источники: 15

Введение

Среди изобилия самых разнообразных по строению и свойствам органических соединений есть особый класс — полимеры (от греч. «поли» — «много» и «мерос» — «часть»). Для этих веществ, прежде всего, характерна огромная молекулярная масса — от десятков тысяч до миллионов атомных единиц массы, поэтому часто их ещё называют высокомолекулярными соединениями. К молекулярным гигантам относятся, например, важнейшие природные полимеры (белки, нуклеиновые кислоты, полисахариды) и синтетические материалы (полиэтилен, поливинилхлорид, каучук и т. д.). Поэтому высокомолекулярные соединения играют важную роль и в биологических процессах, и в практической деятельности человека. Органические полимеры построены из элементарных звеньев — многократно повторяющихся и связанных между собой остатков молекул низкомолекулярных веществ (мономеров). Длину макромолекул выражают средним числом звеньев мономера, которое называют степенью полимеризации. Полимеры могут иметь линейное, разветвлённое и сетчатое строение. Если каждое звено мономера условно обозначить буквой М, то макромолекула линейного строения будет выглядеть так: ... — М—М—М—М—М—М—... В этом случае каждое из элементарных звеньев связано только с двумя соседними и образует неразветвлённую цепь. Основная цепь макромолекулы может иметь короткие ответвления, и тогда построенные по такому типу полимеры будут разветвлёнными: R ... —М—М—М—М—М—М—... R. В сетчатых (сшитых) полимерах длинные линейные цепи связаны друг с другом в единую сетку более короткими поперечными цепями. Если молекула мономера несимметрична (СН2=СН—Х, где Х — заместитель), могут образовываться регулярные и нерегулярные полимеры. В регулярном полимере происходит присоединение либо «голова к хвосту»: —СН2—СНХ—СН2—СНХ—, либо «голова к голове»: —СН2—СНХ—СНХ—СН2—. Макромолекулы полимеров могут быть построены из остатков разных мономеров, высокомолекулярные соединения такого типа называются сополимерами. При этом в зависимости от способа чередования различных звеньев они также бывают регулярного и нерегулярного строения: ... —М—М—М—М—М—М—... регулярный сополимер ... —М—М—М—М—М—М—... нерегулярный сополимер. По своему происхождению все молекулярные соединения делятся на природные — биопополимеры (например, крахмал и целлюлоза) и синтетические (полиэтилен, полистирол и др.). Природные полимеры синтезируются клетками растительных и животных организмов, а синтетические человек научился получать из проектов переработки природного газа, каменного угля. Полимеры могут быть кристаллическими или аморфными. Для кристаллизации высокомолекулярных веществ необходимо упорядоченное строение достаточно длинных участков молекулярной цепи. Высокомолекулярные соединения не имеют четкой температуры плавления. При нагревании многие полимеры не плавятся, а лишь размягчаются, что позволяет формовать из них изделия методами пластической деформации — прессованием, выдавливанием, литьём. Такие полимеры называют пластическими массами (пластмассами, пластиками). У пластмасс низкая плотность, они легче самых лёгких металлов (магния, алюминия) и потому считаются ценными конструкционными материалами. По прочности некоторые пластики превосходят чугун и алюминий, а по химической стойкости — почти все металлы. Они могут быть устойчивы к действию воды и кислорода, кислот и щелочей. Обычно пластмассы — диэлектрики (не проводят электрический ток), и отдельные их сорта известны как лучшие изоляционные материалы из всех используемых в современной технике.Трудно переоценить значение полимеров в нашей жизни. Полимеры окружают нас буквально со всех сторон: из них состоят пакеты в супермаркетах и одноразовая посуда, корпуса телефонов и другой бытовой техники, автомобильные шины и оконные рамы. Это важнейший материал, из которого сделаны постоянно используемые нами предметы. С другой стороны, полимеры являются естественными компонентами всех живых организмов, в том числе и человека.

Историческая справка

Термин “полимерия” был введен в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры) , имеющие одинаковый состав, обладают различной молекулярной массой. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами” ) . Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения. А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, немецкий учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и другие). В 30-х годах было доказано существование свободнорадикального и ионного механизмов полимеризации. С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам, состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Живые полимеры

Много лет тому назад, до того как появились пластмассы и синтетические полимеры, то есть на самом деле почти столь же давно, как существует сама Земля, природа использовала природные полимеры (биополимеры) для того, чтобы стала возможной жизнь. Мы думаем о природных полимерах иначе, чем о полимерах синтетических, поскольку мы не можем похвастать, что они являются плодом нашей изобретательности, а химические компании не могут продавать их с целью получения доходов. Однако все это не делает природные полимеры менее важными. На самом деле оказывается, что во многом они даже важнее синтетических. Итак, биополимеры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды

К природным полимерам относятся РНК и ДНК, которые так важны для генов и процесса продолжения жизни. На самом деле, РНК служит для передачи сигналов и благодаря ей существуют протеины, пептиды и энзимы. Энзимы способствуют протеканию химических процессов в живых организмах, а пептиды являются одними из наиболее интересных составляющих, образующих кожу. волосы, и даже рога носорогов. Среди природных полимеров можно назвать полисахариды (полимеры сахара) и полипептиды, как шелк, кератин (волосы). Натуральный каучук, конечно же, тоже является природным полимером, сделанным просто из углерода и водорода. Давайте посмотрим на каждое из основных семейств природных полимеров более подробно.

БЕЛКИ

Белки - это высокомолекулярные природные соединения, состоящие из остатков α-L аминокислот, - соединенных пептидными связями.

Классификация белков по выполняемым функциям. Функции белков в природе универсальны: каталитические (ферменты); регуляторные (гормоны); структурные (кератин шерсти, фиброин шелка, коллаген); двигательные (актин, миозин); транспортные (гемоглобин); запасные (казеин, яичный альбумин); защитные (иммуноглобулины) и т.д. Состав и строение белков. Несмотря на многообразие белков элементарный состав их относительно одинаков: С – 50-55%; Н – 6,5 – 7,3 %; О– 21 – 24 %; N – 15 – 18 %, S – 0,3– 2,5 %. Кроме того белки могут содержать небольшое количество фосфора, меди, железа, магния, селена, галогенов. Со структурной точки зрения у белков различают четыре уровня организации или четыре структуры: Первичная структура – определенная последовательность α, L -аминокислотных остатков, соединенных пептидными связями в полипептидной цепи. В составе белков обнаружено 20 остатков α, L - аминокислот различного строения. Для каждого индивидуального белка последовательность аминокислот в полипептидных цепях является уникальной. Она определяется генетически и, в свою очередь, определяет более высокие уровни организации данного белка. Замена только одного аминокислотного остатка в полипептидной цепи, состоящей из сотен аминокислот, может весьма существенно изменить свойства данного белка и даже полностью лишить его биологической активности. Следовательно, все разнообразие форм живой материи, основанное в первую очередь на многообразии белковых молекул, возникло в результате естественного отбора в пределах сравнительно небольшой, достаточно случайной выборки из неисчерпаемого множества белковых структур. Первичная структура белка:

Вторичная структура – форма полипептидной цепи в пространстве, закрепленная множеством водородных связей между группами N-H и С=О.