Смекни!
smekni.com

Молекулярные механизмы старения (стр. 2 из 4)

Представляется весьма существенным вывод о неодинаковой динамике накопления соматических мутаций в различных органах и тканях. На трансгенных мышах, несущих шаттл-вектор LacZ, было установлено, что увеличение частоты соматических мутаций в печени происходит равномерно с рождения до глубокой старости, тогда как в головном мозге она нарастает только от рождения до 4-6 месяцев жизни, а затем не изменяется. Перестройки генома постепенно накапливаются в печени до 27-месячного возраста, после чего их число резко увеличивается. В головном мозге геномные перестройки встречаются значительно реже, и с возрастом их частота не увеличивается (Dolleetal., 2000).

В табл. 14 суммированы результаты изучения возрастной динамики мутаций в различных органах трансгенных мышей различных линий (Оnо etal., 2002). Можно видеть, что частота мутаций увеличивается с возрастом во многих тканях, однако степень этого увеличения существенно варьирует. Наибольшая частота мутаций отмечена в клетках тонкой кишки и мочевого пузыря старых мышей. Важно отметить, что степень возрастного увеличения частоты спонтанных мутаций не коррелирует с пролиферативной активностью тканей. Так, относительно мало мутаций накапливается в коже и яичках, которые содержат быстро пролиферирующие клетки, тогда как в сердце и печени, состоящих из непролиферирующих или мало пролиферирующих клеток, скорость их накопления довольно значительна.

В сердце и тонкой кишке мышей в молодом возрасте характер и спектр мутаций практически идентичен и представлен в основном транзициями ГЦ -> AT и 1-bp делециями, тогда как у старых мышей характер мутаций в этих органах был различен. В тонкой кишке накапливались только точечные мутации, включая ГЦ -> ТА, ГЦ -> ЦГ и AT -> ГЦ трансверсии и ГЦ -> AT транзиции, тогда как в сердце старых мышей около половины всех мутаций было представлено большими геномными перестройками, вовлекающими до 34 сантиморганов хромосомной ДНК Остальные же мутации, аккумулирующиеся в сердце, были представлены транзициями ГЦ -> AT в локусах CpG (Dolleetal., 2000). Наибольшая интенсивность возникновения спонтанных хромосомных повреждений наблюдается в молодом возрасте, а по мере старения темп спонтанного мутагенеза снижается. Интересно, что нокаутные TrpS53-/- мыши, погибающие обычно до возраста 6 месяцев от рака, накапливали мутации в селезенке и в меньшей степени в печени быстрее, чем мыши дикого типа или гетерозиготы (Gieseetal., 2002).

Было установлено, что в нормальных тканях человека накапливаются клонально распространяющиеся мутации митохондриальной ДНК (мтДНК) (Colleretal., 2001; Bodyaketal., 2001; Nekhaevaetal., 2002). Обнаружение делеций мтДНК в мышцах человека, так же как доказательства частичного удвоения мтДНК в тканях пожилых людей (Bodyaketal., 2001), позволяют предполагать важную роль клональной экспансии мутированной мтДНК в возрастном увеличении системного окислительного стресса в целом организме (deGrey, 2000; Khrapkoetal., 2003).

Возраст и репарация ДНК

Одной из причин накопления повреждений ДНК с возрастом может быть снижение эффективности систем ее репарации. В ряде работ установлена положительная корреляция между продолжительностью жизни вида и скоростью репарации ДНК, поврежденной ультрафиолетовым светом или ионизирующей радиацией (Burkle, 2002). Большой интерес представляют данные о видовых различиях в специфической репарации ДНК, поврежденной алкилирующими агентами, в частности о различиях в скорости удаления из ДНК промутагенного основания О6-метилгуанина. Оказалось, что печень человека примерно в 10 раз быстрее удаляет О6-метилгуанин, чем печень крысы. Значительно быстрее О6-метилгуанин элиминировался также из лимфоцитов и фибробластов человека, чем из аналогичных тканей мыши (Likhachev, 1990). Эти наблюдения позволяют предполагать меньшую чувствительность человека к канцерогенному действию нитрозосоединений.

Другой причиной различий в продолжительности жизни животных разных видов могли бы быть различия в толерантности к молекулярным повреждениям. Ж. А. Медведев (Medvedev, I972) предположил, что повторность генов (множественность копий) может быть важным фактором долголетия, поскольку повреждения уникальных генов более вероятно будут способствовать их суммации и преждевременному старению. Однако R. Cutler (1991) не обнаружил четкой связи между числом повторов генов и долголетием или между избыточностью рибосомальных генов и скоростью старения. Вместе с тем, рассматривая гены, служащие матрицами для синтеза мРНК в мозге человека, коровы и мыши, он нашел, что в среднем избыточность этих генов у человека больше, чем у коровы, а у коровы больше, чем у мыши. Представленные данные позволяют заключить, что у долгоживущих видов механизмы, защищающие генетический аппарат клетки от повреждений, по-видимому, более совершенны, чем у короткоживущих видов.

Большой интерес представляют данные о возрастных изменениях репарации различных типов повреждений ДНК. В исследованиях А. И. Газиева и др. (1981) было показано, что в клетках старых (18-22 мес.) мышей линии А/Не и СЗН/Sn уровень неингибированного оксимочевиной синтеза (репаративный синтез) в 2 раза ниже, чем у молодых (1.5-2 мес.). При облучении мышей разного возраста репаративный синтез увеличивается в 2-3 раза по сравнению с контролем. Авторы установили, что дело не в снижении активности ферментов репарации ДНК, поврежденной радиацией, а в степени доступности для ферментов этих повреждений ДНК в составе хроматина клеток. Об этом же свидетельствует и возрастное снижение релаксируемости нуклеоида ядер печени мышей при сравнении молодых и старых -облученных животных (Газиев и др., 1981). При амплификации фрагментов транскрибируемых (-актин, р53) и нетранскрибируемых (тяжелой цепи иммуноглобулина IgE) генов в ДНК мозга и селезенки у-облученных и необлученных крыс в возрасте 2 и 28 месяцев, было установлено, что степень амплификации фрагментов этих генов в ДНК старых крыс была существенно ниже, чем у молодых крыс. Репарация повреждений ДНК в мозге крыс разного возраста не отличалась в течение 30 мин после облучения (быстрая фаза репарации), но была существенно замедлена в последующие 5 ч (медленная фаза репарации) в мозге старых крыс (Ploskonosovaetal., 1999).

Было показано, что радиационная повреждаемость ДНК стволовых клеток кишечного эпителия мышей разных линий и возраста примерно одинакова, однако скорость репарации этих повреждений с возрастом снижается. Способность диплоидных фибробластов человека к репарации индуцированных -излучением однонитевых разрывов ДНК достоверно снижается с увеличением возраста донора (Anisimov, 1987). В ряде работ оценивалось влияние возраста донора на интенсивность внепланового синтеза ДНК в клетках человека, подвергнутых invitro УФ-облучению. В. Lamberteta). (1979) нашли отрицательную корреляцию между возрастом и величиной внепланового синтеза ДНК (ВСД) в лейкоцитах периферической крови 58 здоровых субъектов 13-94 лет. Авторы отметили сильные индивидуальные колебания величины ВСД Было обнаружено также ослабление индуцированного УФ-светом репаративного синтеза в лимфоцитах человека с возрастом и в глубокой старости. Было установлено, что с возрастом донора существенно увеличивается накопление разрывов в ДНК фибробластов человека при кратковременном воздействии низкочастотного электромагнитного поля (50 Гц, 1 мТ), что свидетельствует о возрастном снижении эффективности репарации ДНК, поврежденной этим воздействием (IvancsitsetaL, 2003). В табл. 15 суммированы данные о влиянии возраста на эффективность репарации ДНК при различных типах повреждений. Можно видеть, что репарация ДНК зависит как от вида животных, типа повреждающего агента и вызываемого им повреждения, так и от ткани мишени.

Большинство повреждений ДНК репарируется, но не все. Так, у крыс происходит 105 окислительных повреждений ДНК в день в расчете на клетку. Когда скорость репарации не достигает скорости индукции повреждений, происходит увеличение спонтанных повреждений ДНК с возрастом (Vijg, 2000). Точная оценка способности организма восстанавливать специфические повреждения затруднена и часто бывает ошибочной, В большинстве исследований возможного снижения репаративной активности ДНК с возрастом были использованы способы, с помощью которых оценивается фаза синтеза ДНК при эксцизионной репарации. Главный вывод из этих работ, выполненных преимущественно на культуре клеток, состоит в том, что эффективность репаративных систем ДНК не снижается с возрастом (Likhachev, 1990). Однако нельзя исключить, что при старении репарационные системы ДНК становятся более подвержены ошибкам, приводящим к усилению индукции мутаций (Anisimovetal., 1993; Vijg, 2000). В любом случае определенная степень несовершенства является главной чертой системы репарации ДНК, на что указывало фактическое накопление как повреждений ДНК, так и изменение последовательности ДНК.

Изменения структуры и функции генов при старении

При старении может изменяться не только структура генов, но и направление их функционирования. С возрастом в соматических клетках накапливаются не только мутации, но и хромосомные перестройки (Vijg. 2000; Vijg, Dolle, 2002). Полагают, что изменения хроматина могут играть главную роль в связанных с возрастом изменениях регуляции экспрессии генов (Medvedev, 1984). С увеличением возраста не отмечено изменений стехиометрии большинства гистонов, однако имеются сообщения ой изменениях подвида гистона H1 (Medvedev, 1984). Ацетилирование гистонов, которое предположительно изменяет взаимодействие гистон-ДНК и делает ДНК белее доступной, снижается по мере старения на 30-70 %. Важную роль в увеличении продолжительности жизни, как это показано в опытах на дрожжах и С. elegans, играют деацетилазы гистонов, в частности SIR2 и RPD3 (Chang, Min, 2002).