Смекни!
smekni.com

Смазочные материалы (стр. 4 из 7)

где F — площадь рассчитываемого сечения аппарата, м2.

(8)

где Vсм - объем смеси, м3/ч; ω - скорость движения потоков, м3/(м2∙ч).

Принимаем скорость движения потоков ω = 20 м3/(м2∙ч).

Объем смеси найдем по формуле:

Vсм = Vр.р + Vэ.р, м3/ч (9)

где Vр.р - объем рафинатного раствора, м3/ч; Vэ.р - объем экстрактного раствора, м3/ч.

Объемы растворов при соответствующих температурах найдем по формулам:

где Gэ.р, ρэ.р - количество и плотность экстрактного раствора при температуре 85°С; Gр.р, ρр.р - количество и плотность рафинатного раствора при температуре 95°С.

Плотность веществ, при соответствующих температурах находим по формуле:

(12)

Результаты расчетов сведены в таблице 1.7.3.3.

Площадь поперечного сечения составит:

Тогда диаметр экстракционной колонны:

Выбираем значение диаметра по стандартному ряду:

DК = 3,0 м.

Рабочая высота экстракционной колонны:

Нр=h1+h2+ h3+h4+h5, м (1.16)

где h1 - высота верхнего днища до первой тарелки, м;

h2 - высота отстойной зоны рафинатного раствора, м;

h3 - высота экстракционной зоны, м.

h4 - высота отстойной зоны экстрактного раствора, м.

h5 - высота опорной части колонны, м.

Расчет ректификационной колонны

Расчет испарительной секции колонны

Материальный баланс испарительной секции ректификационной колонны К-3 представлен в таблице 5

Таблица 5 - Материальный баланс испарительной секции

Наименование потока G, кг/ч % масс от смеси
Приход:
Рафинатный раствор 43940,0 100
а) рафинат 37367,2 85
б) N-MП 6572,9 15
Итого: 43940,0 100
Расход:
1. Жидкая фаза 37806,6 86
а) рафинат 37367,2 85
б) N-MП 439,4 1
2. Паровая фаза 6133,5 14
N-MП 6133,5 14
Итого: 43940,0 100

Давление в колонне поддерживается на уровне 0,13 - 0,16 МПа [11]

Принимаем давление P = 0,15 МПа.

Тверха = 210 0С;

Тввода раф р-ра = 295 0С;

Тниза = 260 0С

Для предотвращения уноса рафината с парами растворителя и более четкого отделения N-метилпирролидона от рафината испарительная секция оборудована клапанными тарелками – 6-7 штук [11]. Принимаем 7 тарелок.

Составляем тепловой баланс колонны с целью определения количества растворителя, поступающего на орошение.

1. Определяем тепловую нагрузку прихода:

(13)

(14)

Энтальпию рафината находим по формуле Крэга:

кДж/кг

кДж/ч

кДж/ч

Энтальпию N-метилпирролидона берем из справочника [5]

Тогда:

кДж/ч.

2. Определяем тепловую нагрузку расхода:

(15)

В паровой фазе :

кДж/ч (16)

энтальпию N-метилпирролидона берем из справочника [5]

В жидкой фазе:

(17)

(18)

кДж/кг

кДж/ч

кДж/ч

кДж/ч

Тогда:

кДж/ч

3. Найдем тепло орошения по формуле:

кДж/ч (19)

4. Количество орошения:

кг/ч (20)

Все данные по тепловому балансу заносим в таблицу 5.

Определим основные размеры испарительной секции колонны.

5. Определение диаметра испарительной секции.

Рассчитаем количество паров, проходящих через наиболее нагруженное сечении колонны ( сечение над верхней тарелкой) [8]:

Таблица 6 - Тепловой баланс испарительной секции

Наименование потоков G, кг/ч Т, 0С q, кДж/кг Q, кДж/ч·106
Приход:
Рафинатный раствор 43940,0 295
а) рафинат 37367,2 295 680,2 25,42
б) N-МП 6572,9 295 747,6 4,91
Итого: 43940,0 30,33
Расход:
1. Жидкая фаза 37806,6 260 22,30
а) рафинат 37367,2 260 589,2 22,02
б) N-МП 439,4 260 635,0 0,28
2.Паровая фаза 6133,5 210
N-МП 6133,5 210 993,0 6,09
Итого: 43940,0 28,39
Острое орошение
N-МП 4419,8 180 440,0 1,94

,где (21)

t – температура, 0С;

Р – давление, МПа;

G – расход компонента, кг/ч;

M – молекулярная масса компонента.

Молекулярную массу рафинатного раствора находим по правилу аддитивности:

(22)

Тогда:

м3/с.

Определим допустимую линейную скорость паров [8]:

, (23)

К – коэффициент, зависящий от расстояния между тарелками и условий ректификации;

и
- абсолютная плотность паров и жидкости соответственно.

Коэффициент К определяется в зависимости от расстояния между тарелками, типа тарелки и некоторых условий работы колонны. Согласно литературным данным [8], чаще всего расстояние между тарелками лежит в пределах 0,5 – 0,7 м.

Принимаем а = 0,6 м.

Коэффициент К определяем по графику зависимости Кота [8]:

К = 800

Определим плотность жидкости [9]:

(24)

- поправка на изменение плотности при изменении температуры на один градус [9].

Определим плотность паров:

кг/м3 (25)

Тогда по (1.28):

м/с.

Диаметр испарительной секции колонны находим по формуле:

м. (26)

Из стандартного ряда принимаем диаметр D = 3,2 м.

6. Определим рабочую высоту испарительной секции колонны:

,где (27)

h1 – высота от верхнего днища до первой ректификационной тарелки;

h2 – высота эвапарационной зоны;

h3 – высота слоя жидкости внизу секции.

м. (28)

м,где (29)

n – число тарелок;

ht – расстояние между тарелками.

Высоту h3 принимаем равной 2 м [8].

Тогда: Hисп = 1,6+3,6+2 = 7,2 м.

Расчет отпарной секции колонны

Таблица 7 - Материальный баланс отпарной секции

Наименование потока G, кг/ч % масс от смеси % масс
Приход:
1.Рафинатный раствор 37806,6 100,0 97,1
а) рафинат 37367,2 98,8 96,0
б) N-MП 439,4 1,2 1,1
2. Водяной пар 1134,2 3,0 2,9
Итого: 38940,7 103,0 100,0
Расход:
1. Жидкая фаза 37367,2 96,0
а) рафинат 37367,2 98,8 96,0
2. Паровая фаза 1573,6 4,0
а) N-MП 439,4 1,2 1,1
б) водяной пар 1134,2 3,0 2,9
Итого: 38940,7 103,0 100,0

Тепловой баланс отпарной секции составляем с целью определения количества растворителя, подаваемого на орошение.

Температуру входа рафинатного раствора принимаем на 5-10 0С ниже температуры выхода рафинатного раствора из испарительной секции.

Принимаем Твхода = 255 0С

Определим температуру низа колонны по формуле: