Смекни!
smekni.com

Процесс выпаривания растворов (стр. 3 из 7)

Перегонка и ректификация - процессы разделения жидких смесей, основанные на различии в летучестях ее компонентов.

Экстракция - процесс разделения жидких смесей, основанный на различной растворимости компонентов жидкости в растворителе, который практически не смешивается с раствором или смешивается частично.

Сушка - процесс удаления влаги из твердых пористых материалов, основанный на переходе ее в паровую или парогазовую фазу.

Ионный обмен - избирательное извлечение ионов из растворов электролитов твердыми поглотителями.

Кристаллизация - процесс разделения раствора на растворитель и растворенное вещество за счет выделения растворенного вещества из его пересыщенного раствора или расплава.

Растворение - процесс перехода из твердой фазы в жидкую. Извлечение на основе избирательной растворимости какого-либо вещества (или веществ) из твердого пористого материала называют экстракцией из твердого материала, или выщелачиванием.

Мембранные процессы - избирательное извлечение компонентов смеси или их концентрирование с помощью полупроницаемой перегородки - мембраны.

9. Движущая сила МОП, способы выражения сотавов фаз

Движущая сила МОП - градиент концентрации.

Составы жидкой и газовой фаз могут быть выражены в мольных или

массовых соотношениях. Наиболее распространены следующие способы выражения состава:

1. Объемная концентрация - количество компонента, содержащегося в единице объема фазы, кг/м3, кмоль/м3.

2. Мольные или массовые доли - количество компонента, отнесенное к количеству фазы (выраженные в мольных или массовых единицах).

3. Относительная концентрация - отношение количества компонента к количеству носителя, кг/кг, кмоль/кмоль.

4. Парциальные давления - выражение состава газовой фазы, кПа, МПа.

с - мольная объемная концентрация;

массовая объемная концентрация;

x, y - мольная доля;

массовая доля;

X, Y - мольная относительная концентрация;

массовая относительная концентрация;

10. Статика МОП, фазовые диаграммы

Правило фаз Гиббса:Ф+C=K+2. Оно указывает число параметров, которое можно менять произвольно (в известных пределах) при расчете равновесия в процессах массообмена. Применим это правило к реальным процессам:

1) каждая из двух взаимодействующих фаз содержит, помимо распределяемого компонента, инертный компонент носитель (абсорбция, экстракция) С=К+2-Ф=3+2-2=3 - можно изменять 3 параметра: концентрацию, давление и температуру

2) в каждой из двух фаз компонент носитель отсутствует (ректификация) С=К+2-Ф=2+2-2=2 - можно менять 2 параметра. При постоянном давлении с изменением концентрации фазы должна меняться температура, при постоянной температуре - разным концентрациям будут соответствовать разные давления.

Фазовая диаграмма - зависимость между независимыми переменными изображенные в линейных координатах.

В расчётах по массопередаче используют зависимости давления от концентрации (при t=const), температуры от концентрации (P=const) и между равновесными концентрациями фаз:

а) P=const, t=const б) P=const

11. Линия равновесия, уравнение линии равновесия, системы газ-жидкость, пар-жидкость

При равновесии достигается определенная зависимость между предельными (равновесными) концентрациями и концентрациями распределяемого вещества в фазах для данных температуры и давления, при которых осуществляется процесс массопередачи.

В условиях равновесия некоторому значению отвечает строго определенная равновесная концентрация в другой фазе. И наоборот. В общем виде это представляет собой зависимость.

Эта зависимость в графическом виде называется линией равновесия, которая является либо прямой либо кривой.

а) система газ-жидкость, P=const, t=constб) система пар-жидкость P=const

12. Законы Дальтона, Генри, Рауля, идеальные и неидеальные системы

Для случая бинарной газовой смеси, состоящей из распределяемого компонента А и газа-носителя В, взаимодействуют две фазы и три компонента. Поэтому по правилу фаз число степеней свободы будет равно

С=К-Ф+2=3-2+2=3

Это значит, что для данной системы газ-жидкость переменными являются температура, давление и концентрации в обеих фазах. Следовательно, при постоянных температуре и общем давлении зависимость между концентрациями в жидкой и газовой фазах будет однозначной.

Эта зависимость выражается законом Генри: парциальное давление газа над раствором пропорционально мольной доле этого газа в растворе, т.е.

(H-кф. Генри, - парциальное давление поглощаемого компонента в газе) Числовые значения коэффициента Генри для данного газа зависят от природы газа и поглотителя и от температуры, но не зависят от общего давления.

Для идеальных растворов на диаграмме рА - хА зависимость равновесных давлений от концентраций изображается прямой с угловым коэффициентом, равным константе Генри.

Для идеальных растворов связь между мольными долями компонента в газе и в растворе можно оценить по закону Дальтона:

где Р - общее давление газа. Тогда уравнение равновесия примет вид:

mA является коэффициентом распределения или константой фазового равновесия.

Смеси с неограниченной взаимной растворимостью компонентов делятся, на идеальные и неидеальные. Неидеальные смеси можно подразделить на смеси с положительным и отрицательным отклонением от закона Рауля. Идеальные растворы следуют законам Рауля и Дальтона. Для бинарной смеси по закону Рауля.

В отличие от идеального раствора, для которого 1 = γA = γB, парциальные давления компонентов А и В неидеальной бинарной смеси составляют.

Для ряда смесей отклонения от закона Рауля настолько велики, что приводят к качественно новым свойствам смесей. При некотором составе подобные смеси имеют постоянную температуру кипения, которая может быть максимальной или минимальной. При этой температуре, согласно общему закону Коновалова, состав равновесного пара над смесью равен составу жидкости (у=х). Такие смеси называются азеотропными, или нераздельно кипящими.


13. Классификация массообменных аппаратов

В основу классификации массообменных аппаратов положен принцип образования межфазной поверхности:

1) аппараты с фиксированной поверхностью фазового контакта (насадочные и пленочные аппараты, а также аппараты (для сушки, с псевдоожижением), в которых осуществляется взаимодействие газа (жидкости) с твердой фазой);

2) аппараты с поверхностью контакта, образуемой в процессе движения потоков; среди аппаратов этого типа наиб. распространены тарельчатые, для которых характерно дискретное взаимодействие фаз по высоте аппарата; (насадочные колонны, работающие в режиме эмульгирования фаз, и аппараты, в которых осуществляется М. в системе жидкость - жидкость (экстракция));

3) аппараты с внешним подводом энергии (аппараты с мешалками, пульсационные аппараты, вибрационные роторные аппараты и др.)

14. Материальный баланс МОП

Брутто: Gн+Lн=Gк+Lк

По компоненту: Gнун +Lнхн =Gкук +Lкук

Для текущей концентрации:

Gнун +Lх =Gу +Lкук

Решая, получим:

уравнение рабочей линии процесса

15. Уравнение линий рабочих концентраций, рабочие линии, направление МОП

Рабочие концентрации распределяемого вещества не равны равновесным. Зависимость между рабочими концентрациями в координатах х-у - рабочая линия процесса

М.Б. по компоненту: Gнун +Lнхн =Gкук +Lкук

Для текущей концентрации: Gнун +Lх =Gу +Lкук

Решая, получим:

Распределяемое вещество всегда переходит из фазы, где его содержание выше равновесного в фазу, в которое концентрация этого вещества ниже равновесной. Направление переноса вещества определяется по линии равновесия и рабочей линии.

Если рабочая линия ниже линии равновесия - из жидкой в паровую (Ректификация).

Если рабочая линия выше линии равновесия - из газовой в жидкую (Абсорбция).

16. Кинетика МОП, молекулярная и конвективная диффузия, градиент концентраций

Перенос вещества внутри фазы: молекулярная диффузия, либо молекулярная+конвективная.

Молекулярная диффузия-перенос распределяемого вещества, обусловленный тепловым движением. Описывается первым законом Фика:

Масса вещества, придифундировавшая за время dtчерез элементарную поверхность dt, пропорциональная градиенту концентрации этого вещества:

dM=-D dFdt (dc/dx) =-D dFdt grad c.

D-коэффициент молекулярной диффузии.

Конвективная диффузия-перенос вещества вследствие конвективного переноса и молекулярной диффузии.

МD (x) =-D dzdydt grad c

МК (x) =wxdzdycdt

Аналогично по yи z

МD (x+dx) = - Ddzdy

dt

МК (x+dx) = [wxC+

] dzdydt

Суммируем по трем осям

dM=

dTdVв результате решения:

-уравнение конвективной диффузии

17. Модели массопереноса