Смекни!
smekni.com

Технология производства соляной кислоты (стр. 2 из 3)

В атмосферных условиях роль электролита играет водяная пленка на металлической поверхности, в которой растворены электропроводящие примеси. Электродами являются сам металл и содержащиеся в нем примеси. В таком гальваническом элементе примеси, имеющие большее значение электродного потенциала играют роль катода, а сам металл является анодом. На катоде обычно выделяется водород из молекул или ионов среды, а анод растворяется, т.е. подвергается коррозии.

Если реакция проходит в атмосферных условиях в воде, процесс усложняется другим процессом, связанным с растворенным в электролите кислородом, который на катоде может участвовать в реакции, именуемой кислородной деполяризацией катода

O2 + 2H2O + 4e=4OH

По характеру защитного действия против электрохимической коррозии различают анодные и катодные покрытия. К анодным относят такие покрытия, в которых покрывающий металл обладает более отрицательным потенциалом, чем защищаемый (оцинкованное железо). К катодным относятся покрытия металлом с большим значением электродного потенциала (луженое, т.е. покрытое оловом железо). Пока слой, покрывающий основной металл, полностью изолирует его от воздействия окружающей среды, принципиального различия между этими видами покрытый нет. При нарушении целостности покрытия создаются совершенно различные условия. Катодное покрытие престает защищать и усиливает своим присутствием коррозию. Анодное покрытие будет само подвергаться разрушению, продолжая защищать основной металл.

Для защиты металлов от коррозии часто химическим или электрохимическим путем формируют на его поверхности защитную оксидную пленку. Для алюминия используют электрохимический способ: анодирование. Для железа, применяют, например, кипячение в растворе солей фосфорной кислоты или в азотной кислоте.

II. Производство соляной кислоты.

Соляная кислота представляет собой раствор газообразного хлористого водорода HCl в воде. Последний представляет собой гигроскопичный бесцветный газ с резким запахом. Обычно употребляемая концентрированная соляная кислота содержит 36 – 38% хлористого водорода и имеет плотность 1, 19 г/см3. Такая кислота дымит на воздухе, так как из неё выделяется газообразный HCl; при соединении с влагой воздуха образуются мельчайшие капельки соляной кислоты.

Чистая кислота бесцветна, а техническая имеет желтоватый оттенок, вызванный следами соединений железа, хлора и других элементов (FeCl3).

Часто применяют разбавленную кислоту, содержащую 10% и меньше хлористого водорода. Разбавленные растворы не выделяют газообразного HCl и не дымят ни в сухом, ни во влажном воздухе.

Соляная кислота представляет собой летучее соединение, так как при нагревании она улетучивается. Она является сильной кислотой и энергично взаимодействует с большинством металлов. Однако такие металлы, как золото, платина, серебро, вольфрам и свинец, соляной кислотой практически не травятся. Многие недрагоценные металлы, растворяясь в кислоте, образуют хлориды, например цинк: Zn + 2HCl = ZnCl2 + H2.

Процесс получения соляной кислоты имеет две стадии:

1) получение хлористого водорода;

2) абсорбция хлористого водорода водой.

Соляная кислота применяется в химической, пищевой промышленности, цветной и черной металлургии.

Кстати, известный факт, что соляная кислота содержится в желудочном соке (около 0,3 %) и играет важную роль, так как способствует перевариванию пищи и убивает различные болезнетворные бактерии (холеры, тифа и др.). Если последние попадают в желудок вместе с большим количеством воды, то вследствие разбавления раствора НСl они выживают и вызывают заболевание организма. Поэтому во время эпидемий особенно опасна сырая вода. При повышении концентрации НСl в желудке ощущается «изжога», которую устраняют, принимая внутрь небольшое количество NаНСО3 или МgО. Наоборот, при недостаточной кислотности желудочного сока соляная кислота прописывается для приема внутрь.

Производство кислоты соляной освоено в 1962 году. За период эксплуатации производился ремонт, усовершенствовалось технологическое оборудование. Высокое качество сырья позволяет получать кислоту высокого качества. Кислота соляная также применяется в производстве пластмасс, ядохимикатов, полупродуктов и красителей для очистки поверхности металлов от окислов, карбонатов, в электротехнической, текстильной промышленности.

Кислота соляная ингибированная Марка А – применяется для кислотной обработки скважин в нефтяной промышленности с целью улучшения сообщаемости скважин с пластом (для расширения и очистки пор и трещин, снятия фильтрационного сопротивления коллектора, сложенного карбонатными породами-доломитами и известняками, или загрязненного карбонатными отложениями).

Кислота соляная марки Б – применяется для травления черных и некоторых цветных металлов и изделий из них, для химической очистки котлов и аппаратов от неорганических отложений.

Соляную кислоту применяют для получения хлоридов Zn, Ba. Mg, Са, Fe, A1 и т. д., для травления при пайке и лужении, и цветной металлургии (извлечение Pt, An), при гидролизе древесины, в производстве красителей, для гидрохлорировании органических соединении и т. д.

1. Технология производства соляной кислоты.

Соляная кислота (хлороводородная кислота), по химическому составу отвечающая хлориду водорода находит широкое применение в ряде отраслей народного хозяйства.

В промышленности соляную кислоту получают следующими способами:

- сульфатным;

- синтетическим,

- из абгазов (побочных газов) ряда процессов.

Однако следует отметить, что первые два метода теряют свое промышленное значение.

Производство соляной кислоты (реактивной, полученной сульфатным способом, синтетической абгазной) заключается в получении HCI с последующей его абсорбции водой. В зависимости от способа отвода теплоты абсорбции, которая достигает 72,8 кДж/моль процессы разделяются на изотермические (при постоянной температуре), адиабатические (без теплообмена с окружающей средой) и комбинированные.

a) Сульфатные метод основан на взаимодействии хлорида натрия NaCl с концентрированной серной кислотой H2SO4 при 500-550 С. Реакционные газы, отходящие от муфельных печей содержат 50-65% хлороводорода, а газы от реакторов с кипящим слоем до 5% HCI. В настоящее время предложено заменить серную кислоту на смесь SO2 и О2 с использованием в качестве катализатора Fe2O3 и проведением процесса при температуре 540 С.

b) В основе прямого синтеза соляной кислоты лежит цепная реакция горения:

Р2-CI2+2HCI +184,7кДж (1)

Реакция инициируется светом, влагой, твердыми пористыми веществами (древесный уголь, пористая платина) и некоторыми минеральными веществами (кварц, глина). Синтез в камерах сжигания ведут с избытком в 5-10% Н2. Камеры выполнены из стали, графита, кварца, огнеупорного кирпича. Наиболее современным материалом, предотвращающий загрязнение продукта является графит, импрегнированный фенолоформальдегидными смолами. Для предотвращения взрывного характера горения реагенты смешивают непосредственно в факеле пламени горелки. В верхней зоне камер сжигания устанавливают теплообменники для охлаждения реакционных газов до 150-160С. Мощность современных графитовых печей достигает 65 т/сут (в пересчете на соляную кислоту содержащую 35% HCI). В случае дефицита водорода применяют различные модификации процесса. Например, пропускают смесь CI2 c водяным паром через слой пористого раскаленного угля:

CO+H2O+CI2=2HCI+CO2 (2)

Более 90% соляной кислоты в СНI в настоящее время получают их абгазного хлороводорода HCI, образующегося при хлорировании и дегидрохлорировании органических соединений, пиролизе хлорорганических отходов, хлоридов металлов, получении калийных нехлорированных удобрений и др.

Абгазные газы содержат различные количества хлороводорода, инертные примеси (N2H2CH4), малорастворимые в воде органические вещества (хлорбензол, хлорметаны), водорастворимые вещества (уксусная кислота, хлораль), кислые примеси и воду.

В промышленности для получения соляной кислоты наиболее широко применяют схемы адиабатической абсорбции. Абгазные газы вводят в нижнюю часть абсорбера, а воду (или разбавленную соляную кислоту – противотоком в верхнюю.

Соляная кислота нагревается до температуры кипения благодаря температуре растворения HCI. Зависимость изменения температуры абсорбции и концентрации HCI показана на рис. 1


Рис. 1. Схема распределения температур (кривая 1) и концентрации (кривая 2) HCI при высоте адиаботического абсорбера

Температура абсорбции определяется температурой кипения кислоты соответствующей концентрации, максимальная температура кипения азеотропной смеси находится около 110С.

Типовая схема адиабатической абсорбции HCI из абгазов, образующихся при хлорировании, представлена на рисунке 2. Хлороводород поглощается в абсорбере 1, а остатки малорастворимых в воде органических веществ отделяют от воды после конденсации в аппарате 2, дочищают в хвостовой колонне 4 и сепараторах 3,5 и получают товарную соляную кислоту.

1 – абиабатический абсорбер; 2 – конденсатор; 3, 5 – сепараторы; 4 – хвостовая колонна; 6 – сборник органической фазы; сборник водной фазы; 8,12 – насосы; 9 – отдувочная колонна; 10- теплообменник, 11 – сборник товарной кислоты.

Рис. 2. Схема типовой адиабатический абсорбции соляной кислоты из абгазов.

Получение соляной кислоты из абгазных газов с использованием комбинированной схемы абсорбции представлено в виде типовой схемы на рис.3.