Смекни!
smekni.com

Об энергетике России — традиционной и возобновляемой (стр. 2 из 3)

Сдерживание развития энергоемких отраслей и интенсификация технологического энергосбережения позволят за 20 лет при росте экономики от 2.3 до 3.3 раза ограничиться ростом потребления энергии в 1.3-1.4 раза и электроэнергии — в 1.4-1.5 раза.

Предусматривается двукратное снижение удельной энергоемкости валового внутреннего продукта и соответствующий рост энергоэффективности экономики. Доля потребляемых энергоресурсов в распределенном валовом внутреннем продукте снизится с 22% в 2000 г. до 13- 15% в 2020 г.

О возобновляемых энергоресурсах

Возобновляемые энергетические ресурсы — вода, ветер, биомасса в виде дров — традиционно имели широкое применение в России.

На открытых и сухих землях юга страны, где дул устойчивый ветер, использовались ветряные мельницы (ветровые машины). Севернее, где климат влажнее, речная сеть более развита, а ветры менее постоянны, применялись так называемые водяные мельницы, которые в современной терминологии могут быть названы мини-гидроустановками или гидромашинами (водяные машины).

Если ветряные мельницы преимущественно применялись для размола зерна, то водяные машины служили для более разнообразных целей. Начиная с XVII века, когда в России происходило начальное становление промышленности, водяные машины приводили в движение разнообразные механизмы на первых заводах и фабриках. С их помощью осуществлялось движение прессов и кузнечных мехов на железоделательных заводах, двигались ткацкие станки на текстильных мануфактурах, крутились жернова для размола зерна и дробились камни. Вместе с этим следует признать, что для выработки электроэнергии возобновляемые ресурсы прежде не применялись.

Научные аспекты ветротехники развивались в России с середины XIX века. В 1852 г. П.Л. Чебышев начал проводить работы по аналитическому определению оптимальной формы крыльев ветряной мельницы. Правда, в то время работы завершены не были, и эта задача была решена позже — в 1918-1920 гг. Н.Е. Жуковским, который теоретически определил коэффициент использования энергии ветра и предложил наиболее эффективный профиль крыльев ветроколеса.

Позже в СССР были проведены обширные исследования, в результате которых были составлены сборники таблиц, графики и карты, отражавшие изменения характеристик ветра в пространстве и во времени. Была составлена карта распределения ветроэнергетических ресурсов по некоторым зонам бывшего СССР. Уже тогда было признано более целесообразным строительство не отдельно стоящих ветровых электрических машин, а объединенных в группы (ветровые парки) — поскольку характеристики ветра даже на сравнительно небольшой площади существенно различаются от одного места к другому. Это позволяет получать более равномерную выработку электроэнергии. Также были сделаны оценки возможности аккумулирования электроэнергии в том случае, если ветроэлектрические машины не подключены к общей энергосистеме.

Поскольку до 1917 г. Россия не имела развитых электрических сетей, то для выполнения плана большевиков по электрификации страны на первых порах были привлечены все местные ресурсы. В первые годы советской власти для выработки электроэнергии использовались дрова, торф, сила малых водотоков и даже ветер. Сейчас мало кто знает, что в 20-30-х гг. XX века российские ветроэлектрические машины считались одними из наиболее продвинутых в мире.

В 1931 г. в Крыму, на Каранских высотах, была построена опытная ветровая электростанция Д-30 установленной мощностью 100 кВт. Она имела ветроколесо диаметром 30 м с тремя крыльями, которые совершали 30 оборотов в минуту. Эта ВЭС успешно работала 10 лет, подавая электроэнергию в Севастопольскую энергосистему и была взорвана в 1942 г. в ходе боевых действий Великой Отечественной войны. Там же, в Крыму, на вершине горы Ай-Петри, в 1938 г. было начато строительство ВЭС мощностью 5 МВт с двумя трехлопастными ветроколесами диаметром 80 м каждое. Эти работы не были завершены из-за начала войны.

Всего за период с 1934 по 1938 г. в СССР были спроектированы, построены и введены в эксплуатацию около 3000 ВЭУ типов ВД-5-ВД-8. К 1938 г. было налажено крупносерийное производство ветровых машин мощностью 1.8-4 кВт, общее количество которых к началу Второй мировой войны достигло 10 000 единиц.

Согласно имеющимся оценкам, к 1960 г. в Советском Союзе были построены более 40000 ветровых машин, преимущественно применявшихся в сельскохозяйственном производстве для водоснабжения, помола и подготовки кормов и т.д. В то же время производились генераторы для малых гидроэлектростанций, которые устанавливались на небольших водотоках.

Использование энергии малых рек было широко распространено в России XIX и первой половины XX веков. Согласно современным оценкам, в XIX веке работали около 65 000 водяных мельниц, а количество малых ГЭС в СССР после окончания Второй мировой войны оценивается в 6500 единиц. В последующие годы это направление энергетики было признано неперспективным и утратило государственную поддержку, что привело практически к полному разрушению и упадку созданной прежде инфраструктуры. В настоящее время по всей России количество действующих малых ГЭС оценивается примерно в сто единиц.

Роль биомассы (дров) в отоплении жилищ в сельской местности, где до настоящего времени нет иных источников теплоснабжения, всегда являлась определяющей. В XIX веке заготовка дров была важной частью жизненного уклада как сельских, так и городских жителей — от этого зависело выживание в течение продолжительного зимнего периода. В XX веке теплоснабжение городов было в значительной степени переведено на уголь, а в конце века — на природный газ. В сельской местности дрова по-прежнему являются основным энергетическим ресурсом для обогрева жилищ.

Термин возобновляемая энергия определен как «энергия, получаемая из постоянных (непрерывных) или возобновляющихся потоков энергии, циркулирующих в естественной природе». Или, иными словами, «потоки энергии, самостоятельно восстанавливающиеся до прежнего уровня в процессе их использования».

В российской практике встречается такое определение: «возобновляемые (неистощаемые) источники энергии — источники энергии, образующиеся на основе постоянно существующих или периодически возникающих процессов в природе, а также жизненном цикле растительного и животного мира и жизнедеятельности человеческого общества».

Таким образом определяются понятия возобновляемая энергия и возобновляемые (неистощаемые) источники энергии. Нам представляется важным определить понятие устойчивая возобновляемая энергетика (sustainable renewable energy): это энергетика (способ производства тепловой и электрической энергии в форме, пригодной для целей безопасного развития человечества), использующая возобновляемые потоки и источники энергии, которые восстанавливаются со скоростью не меньшей, чем скорость их потребления, и не наносит в процессе применения ущерба окружающей среде (существующим природным сообществам и ландшафтам), а также вреда здоровью людей.

Основываясь на этом определении, можно сказать, что в настоящее время известны следующие способы производства тепловой и электрической энергии при помощи возобновляющихся энергоресурсов:

солнечные термальные установки (solar thermal installations): преимущественно служат для нагрева воды и обогрева зданий;

солнечные фотоэлектрические системы (photovoltaics systems): служат для производства электроэнергии путем преобразования солнечной энергии в электрическую;

ветровые машины (wind turbines): преимущественно служат для производства электрической энергии (также для приведения в движение несложных механизмов — например, водоподнимающих насосов) в местностях с устойчивыми ветрами;

биоэнергетика (bioenergy): объединяет все способы производства тепловой и электрической энергии путем использования биомассы — прямое сжигание как переработанных, так и не переработанных отходов сельского хозяйства и лесопиления; производство биогаза (метана) из отходов сельского хозяйства и бытовых отходов; производства различных видов жидкого топлива в результате переработки растительной биомассы;

гидроэнергетика (hydro power): применение энергии водных потоков — как крупных, так и малых (в международной практике крупные гидроэлектростанции не относятся к устойчивым энергосистемам, использующим ВИЭ, по причине их отрицательного влияния на окружающую среду и потенциальной опасности разрушения и затопления больших территорий суши, поэтому в большинстве стран к малым ГЭС относят станции, имеющие мощность менее 10 МВт, в некоторых — в том числе в России — энергетики считают малыми ГЭС, имеющие мощность менее 30 МВт);

использование энергии морских приливов (tidal power): производство энергии за счет приливного и отливного движения морских водных масс, обусловленных фазами луны — очень перспективный, но в настоящее время мало распространенный способ производства энергии;

использование энергии морских волн (wave power): производство энергии путем использования волнообразного движения поверхностных морских водных масс, обусловленных движением ветра и морских течений, — способ производства энергии, в настоящее время находящийся на этапе технологических разработок;

использование энергии морских течений (stream power): преобразование энергии морских течений в электрическую энергию — очень перспективный, находящийся на этапе технологических разработок способ производства энергии;

использование энергии, получаемой за счет разности температур между поверхностными и глубинными слоями океанских вод, — способ, находящийся на этапе исследований и технологических разработок;

использование термальной энергии земных недр (geothermal power): производство энергии за счет физико-химических процессов в земных недрах, в результате которых происходит нагревание подземных вод до состояния перегретого пара.

Согласно одной из широко применяемых на международном уровне классификаций возобновляемых энергоресурсов, все они делятся на возобновляемые энергоресурсы солнечного происхождения (solar energy renewables) и возобновляемые энергоресурсы несолнечного происхождения (non-solar renewables). К солнечным относятся все те, которые связаны с процессами, приводимыми в движение приходящей на Землю солнечной радиацией. Солнечная энергия в свою очередь делится на прямую (direct use) — прямое преобразование энергии солнечных лучей, и непрямую (indirect use) — применение той части солнечной энергии, которая приводит в движение атмосферу и воды океанов, энергию которых удается использовать.