Смекни!
smekni.com

Извлечение свинца из лома аккумуляторных батарей (стр. 7 из 8)

Материалы с меньшей плотностью сгребают с поверхности отстойника 3 и направляют в резервуар с водой 4, в котором материалы не тонущие в воде, такие как полипропилен из корпусов аккумуляторов, отделяются от материалов, тонущих в воде; например, от кусков эбонитовых корпусов аккумуляторов и частей аккумуляторных перегородок. Пластмассы, собираемые с поверхности резервуара 4, обычно направляют на переработку, а материалы, оседающие на дне резервуара, представляют собой отходы и отбрасываются.

В состав фазы с высокой плотностью в отстойнике 3 входят как свинцовая паста так и конструкционный металл исходных аккумуляторов. Разделение этих двух материалов проводят в сепараторе 5, представляющем собой грохот или вибромельницу. Получаемая при разделении твердая металлическая фаза подается на стадию рафинирования 6, где металл сушат и подвергают плавке с получением свинцовых сплавов, которые могут быть использованы для производства новых аккумуляторов. Влажную пасту из сепаратора 5 подвергают измельчению в устройстве 7, в результате чего происходит увеличение поверхности и повышается способность к выщелачиванию у пасты, которая далее подается в реактор сульфатирования 8. Пасту и электролит, выделенные из утильных батарей, подвергают взаимодействию друг с другом для увеличения содержания сульфата свинца в пасте и уменьшения содержания кислоты в электролите. Образующуюся пасту смешивают с водно-аммиачным раствором сульфата аммония для растворения большей части сульфата свинца, присутствующего в пасте. В рассматриваемом варианте процесса влажная паста из измельчающего устройства 7 и жидкий электролит из дробилки / смешивают в реакторе сульфатирования 8. В нем паста реагирует при умеренном перемешивании с серной кислотой, содержащейся в электролите, в результате чего значительно увеличивается содержание сульфата свинца в пасте и уменьшается концентрация кислоты в электролите.

В состав пасты до реакции входят сульфат свинца PbS04, диоксида свинца РЬ02, оксид свинца РЬО и небольшие количества металлического свинца РЬ. Оксиды свинца реагируют с серной кислотой, содержащейся в электролите, с образованием сульфата свинца и воды. Кроме того, в присутствии серной кислоты двуокись свинца и металлический свинец взаимодействуют с образованием сульфата свинца и воды. Использование электролита на стадии сульфатирования позволяет решить проблему удаления отработанного электролита.

В отличие от PbS04 и РЬО, РЬ02 не растворяется в водно-аммиачном растворе сульфата аммония и не реагирует с серной кислотой с образованием PbS04 до тех пор пока она не восстановлена до РЬО. Некоторое количество восстанавливается металлическим свинцом, присутствующим в пасте, однако количество РЬ (производимого отрицательными пластинами аккумулятора) меньше, чем РЬ02 (производимой положительными пластинами аккумулятора). Вследствие этого для восстановления избытка РЬ02 приходится проводить дополнительную обработку, например путем кальцинирования или добавки восстановителей, таких как перекись водорода, формальдегид, РЬ и т. п. В случае необходимости восстановитель можно вводить в реактор сульфатирования 8 по линии 8а или можно добавлять его позднее, на стадии вторичного извлечения. В любом случае перед добавлением восстановителя пасту желательно измельчать, поскольку присутствие PbS04 и РЬО затрудняет восстановление РЬОг.

При восстановлении РЬ02 путем кальцинирования (за счет диссоциации) кальцинирование смеси можно проводить после ее выхода со стадии измельчения 7 перед подачей в реактор сульфатирования. После восстановления РЬ02 окисел может быть легко сульфатирован и растворен в водно-аммиачном растворе сульфата аммония.

Для полного протекания реакции сульфатирования в реакторе 8 требуется несколько дней (в случае умеренного перемешивания и комнатной температуры). Однако в данном процессе не требуется полного протекания реакции. Обычно реакцию проводят только в течение нескольких часов, например 3—5 ч. В случае необходимости реакцию можно ускорить за счет повышения температуры в реакторе 8, максимально до ~100°С. По линии 86 в реактор может быть добавлена серная кислота для компенсации потерь электролита, реагирующего с РЬО, входящей в состав пасты. Вместо электролита для той же цели может быть использована серная кислота, однако такая замена нежелательна, поскольку электролит из отработанных аккумуляторов необходимо утилизировать.

Для удаления избытка жидкости из продукта, образующегося в реакторе сульфатирования 8, продукт направляют в концентрирующий аппарат 9, где сульфатированная паста оседает и отделяется от основной части жидкой фазы (главным образом воды). Из получаемого осадка дополнительно удаляют воду с тем, чтобы ее содержание не превышало 20%, предпочтительно менее 10%. Вода или разбавленный электролит, выделяемые из сульфатированной пасты в аппарате 8, выводятся по линии 10 и могут быть возвращены для использования на стадии промывки 24, которая будет описана ниже, или в резервуар 4, или на какую-либо другую стадию процесса, в которой не требуется вода высокой чистоты.

Для выщелачивания сульфата свинца из концентрированной сульфатированной пасты последнюю из концентрирующего аппарата 9 направляют в реактор 11, в котором находится водно-аммиачный раствор сульфата аммония. В состав этого раствора входит 2—25 % аммиака и 10—15 % сульфата аммония. Предпочтительным содержанием является 10—15 % аммиака и 20—35 % сульфата аммония. Соотносительно высокие концентрации аммиака и сульфата аммония необходимы для достижения высокой эффективности выщелачивания сульфата свинца из пасты. Значительные количества сульфата свинца быстро растворяются в выщелачивающем растворе, однако растворения диоксида свинца и металлического свинца, содержащихся в пасте, не происходит. Не растворяются также такие компоненты, которые обычно присутствуют в материалах свинцовых аккумуляторов, как сурьма, барий, висмут, мышьяк, олово и железо.

Таким образом, в результате процесса выщелачивания происходит значительное увеличение чистоты сульфата свинца, извлекаемого из пасты. Среди элементов, переходящих в выщелачивающий раствор, находятся медь, серебро, кадмий и щелочные металлы. Процесс выщелачивания протекает довольно быстро и при умеренном перемешивании и комнатной температуре заканчивается за время менее 1 ч, обычно даже менее чем за 5 мин. При комнатной температуре выщелачивающий раствор способен растворить до 10 % свинца, однако на практике содержание свинца в растворе не превышает 5 %. При повышении температуры раствора увеличивается его растворяющая способность, однако при этом возрастает давление паров аммиака и уменьшается стабильность комплексов свинца в растворе. Оптимальное время пребывания в реакторе выщелачивания 11 выбирается таким образом, чтобы в растворе достигалась концентрация свинца 5—10 % (по массе).

Для отделения нерастворившихся материалов, в состав которых входят примеси и нерастворимые соединения свинца, от концентрированного раствора, получаемого в реакторе 11, смесь из реактора направляют на фильтр 12. Получаемый фильтрат — концентрированный раствор соединений свинца — подают для осаждения в реактор 13, в котором происходит образование карбоната свинца, например основного. Карбоната свинца, который выпадает в виде мелкокристаллического осадка.

Наилучшими реагентами для эффективного осаждения являются карбонат и бикарбонат аммония, а также углекислый газ. При осаждении карбоната свинца происходит дальнейшая очистка выделяемого свинца, поскольку карбонаты таких металлов, присутствующих в материале аккумуляторов, как медь, серебро и кадмий являются растворимыми и в осадок вместе с карбонатом свинца не выпадают. Для отделения осадка карбоната свинца от раствора, суспензию, образующуюся в реакторе осаждения, пропускают через фильтр 14, отделяемую твердую фазу промывают и сушат (стадии 15 и 16). Фильтрат с фильтра 14 возвращают в реактор выщелачивания 11, в который по линиям 17 и 18 вводят дополнительные количества аммиака и сульфата аммония, необходимые для поддержания требуемого состава выщелачивающего раствора.

Аммиак добавляют в таких количествах, чтобы его содержание в растворе находилось в требуемом интервале, а добавление сульфата аммония проводят при слишком сильном разбавлении выщелачивающего раствора водой. Необходимое количество аммиака непосредственно добавляется к раствору, после чего раствор пропускают через слой сульфата аммония. Такой метод обеспечивает получение насыщенного раствора аммиака и сульфата аммония, обладающего необходимой выщелачивающей способностью.Для того, чтобы поддерживать примерно постоянный объем расТЁора в реакторе выщелачивания //, часть раствора с фильтра 14 возвращают в реактор //, а остальной раствор выводят из системы. Происходящее при этом уменьшение объема компенсируют за счет добавок свежего аммиака и сульфата аммония, а также за счет жидкости, содержащейся в пасте, поступающей в реактор. Так, в рассматриваемом варианте процесса часть фильтрата с фильтра 14 поступает в реактор для осаждения тяжелых металлов 19, где происходит осаждение таких металлов как медь, серебро, кадмий и свинец в виде сульфидов в результате добавления сероводорода или сульфида аммония. Образующиеся осадки сульфидов металлов могут быть отделены от раствора фильтрованием. Если в растворе содержится избыточное количество свинца, его можно пропустить через слой карбоната аммония в результате чего образуется карбонат свинца, который может быть удален путем фильтрования. Оставшийся раствор сульфата аммония, обычно содержащий 20—30 % сульфата аммония и 5—15 % аммиака, для нейтрализации аммиака может быть обработан концентрированной серной кислотой, в результате чего увеличивается содержание сульфата аммония. В отличие от растворов сульфата аммония, получаемых при проведении других процессов выделения свинца, например при плавке, растворы получаемые в данном случае являются достаточно концентрированными, не содержат примесей и могут быть использованы в качестве сырья для установок производства сульфата аммония.