Смекни!
smekni.com

Защита атмосферы (стр. 2 из 3)

На рис. 3 представлен циклон с водяной пленкой. Запыленный воздух подается через воздуховод (5) в нижнюю часть аппарата тангенциально со скоростью 15-21 м/с. Закрученный воздушный поток, двигаясь вверх, встречает пленку воды, стекающую вниз по поверхности цилиндра (2). Очищенный воздух отводится из верхней части аппарата (4) также тангенциально по направлению вращения воздушного потока. В циклоне с водяной пленкой нет выхлопной трубы, свойственной сухим циклонам, что позволяет уменьшить диаметр его цилиндрической части.Внутренняя поверхность циклона непрерывно орошается водой из сопл (3), размещенных по окружности. Пленка воды на внутренней поверхности циклона должна быть сплошной, поэтому сопла установлены так, что струи воды направлены по касательной к поверхности цилиндра по ходу вращения воздушного потока. Пыль, захваченная водяной пленкой, стекает вместе с водой в коническую часть циклона и удаляется через патрубок (1), погруженный в воду отстойника. Отстоявшаяся вода вновь подается в циклон. Скорость воздуха на входе циклона 15-20 м/с. Эффективность циклонов с водяной пленкой составляет для пыли размером частиц до 5 мкм - 88-89%, для пыли с более крупными частицами - 95-100%.

Другими типами центробежного пылеуловителя служат ротоклон (рис. 4) и скруббер (рис. 5).

Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежность работы при температуре газов до 5000С, улавливание пыли в сухом виде, почти постоянное гидравлическое сопротивление аппарата, простота изготовления, высокая степень очистки.


Рис. 4 - Газопромывательс центральной опускной трубой:1 – входной патрубок; 2 – резервуар с жидкостью; 3 – сопло

Запыленный газ входит по центральной трубе, с большой скоростью ударяется о поверхность жидкости и, поворачивая на 180°, удаляется из аппарата. Частицы пыли при ударе проникают в жидкость и в виде шлама периодически или непрерывно отводятся из аппарата.

Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавливание частиц размером меньше 5мкм.

Полые форсуночные скрубберы представляют собой колонны круглого или прямоугольного сечения, в которых осуществляется контакт между газами и каплями жидкости, распыливаемой форсунками. По направлению движения газов и жидкости полые скрубберы делятся на противоточные, прямоточные и с поперечным подводом жидкости. При мокром обеспыливании обычно применяют аппараты с противонаправленным движением газов и жидкости, реже – с поперечным подводом жидкости. Прямоточные полые скрубберы широко используются при испарительном охлаждении газов.

В противоточном скруббере (рис. 5.) капли из форсунок падают навстречу запыленному потоку газов. Капли должны быть достаточно крупными, чтобы не быть унесенными газовым потоком, скорость которого обычно составляет vг = 0,61,2 м/с. Поэтому в газопромывателях обычно устанавливают форсунки грубого распыления, работающие при давлении 0,3–0,4 МПа. При скоростях газов более 5 м/с после газопромывателя необходима установка каплеуловителя.


Рис. 5 - Полый форсуночный скруббер: 1 – корпус; 2 – газораспределительная решетка; 3 – форсунки

Высота аппарата обычно в 2,5 раза превышает его диаметр (Н = 2,5D). Форсунки устанавливают в аппарате в одном или нескольких сечениях: иногда рядами (до 14–16 в сечении), иногда только по оси аппарата.Факел распыла форсунок может быть направлен вертикально сверху вниз или под некоторым углом к горизонтальной плоскости. При расположении форсунок в несколько ярусов возможна комбинированная установка распылителей: часть факелов направлена по ходугазов, другая часть – в противоположном направлении. Для лучшего распределения газов по сечению аппарата в нижней части скруббера устанавливают газораспределительную решетку.

Полые форсуночные скрубберы широко используют для улавливания крупной пыли, а также при охлаждении газов и кондиционирования воздуха. Удельный расход жидкости невелик – от 0,5 до 8 л/м3 очищенного газа.

Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фильтрующие материалы. Фильтрующие перегородки состоят из волокнистых или зернистых элементов и условно подразделяются на следующие типы.

Гибкие пористые перегородки – тканевые материалы из природных, синтетических или минеральных волокон, нетканные волокнистые материалы (войлоки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мембранные фильтры).

Фильтрация - весьма распространенный прием тонкой очистки газов. Ее преимущества - сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

Очистка выбросов газообразных веществ, промышленных предприятий

В настоящее время, когда безотходная технология находится в периоде становления и полностью безотходных предприятий еще нет, основной задачей газоочистки служит доведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами.

Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на пять основных групп:

1. Метод абсорбции – заключается в поглощении отдельных компонентов газообразной смеси абсорбентом (поглотителем) в качестве которого выступает жидкость.

Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям:

1) абсорбционная емкость, т.е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления;

2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции;

3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента;

4) дешевизна;

5) отсутствие коррозирующего действия на аппаратуру.

В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента используют воду, для улавливания водяных паров – серную кислоту, для улавливания ароматических углеводородов – масла.

Абсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. При физической абсорбции регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрированно.

Для реализации процесса очистки применяют абсорберы различных конструкций (пленочные, насадочные, трубчатые и др.). Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т.д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидродинамического режима этих реакторов, работающих при скорости газа 0,02-0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки.

Рис. 6 - Насадочный скруббер с поперечным орошением: 1 – корпус; 2 – форсунки; 3 – оросительное устройство;4 – опорная решетка; 5 – насадка; 6 – шламосборник


Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.

Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.

2. Метод хемосорбции – основан на поглощении газов и паров твердыми и жидкими поглотителями, в результате чего образуются мало летучие и малорастворимые соединения. Большинство хемосорбционных процессов газоочистки обратимы, т.е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей.

3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высокопористых материалов, обладающих развитой удельной поверхностью.