Смекни!
smekni.com

Методы контроля загрязняющих веществ в объектах окружающей среды (стр. 4 из 4)

В последние годы развивается ионная хроматография без подавления фонового сигнала элемента и с различными способами детектирования: фотометрический, атомноабсорбционный, ионометрический (ионселективные электроды).

Достоинства метода: низкий предел определения - 1 10 мг/мл, селективность, возможность одновременного определения неорганических и органических ионов экспрессность, широкий диапазон определяемых концентраций.

Применяют отечественный хроматограф “Цвет-300б”, кондуктометрический детектор, микропроцессор. Предел обнаружения по хлориду натрия - 3,10 мг/мл.

Газовая хроматография

В основу метода газовой хроматографии положен следующий принцип: анализ смеси веществ в результате распределения компонентов между несмывающимися фазами, одна из которых подвижная - инертный газ (азот, гелий и др.) ,другая - неподвижная (высококипящая жидкость или твердая фаза).

Этот метод имеет два варианта: газо-адсорбционная и газожидкостная хроматография.

Разделение компонентов смеси происходит в хроматографической колонке. Хроматографические колонки: набивные (длина -1-3м,диаметр-около 4мм,материал-стекло сталь и др.) и капиллярные (длина - до 50м,материал-стекло,кварц).

Выбор неподвижной фазы (Нф).Эффективность колонки(способность разделять сложные смеси на отдельные компоненты) зависит от размера частиц, на которые нанесена жидкая фаза. Она возрастает при использовании однородных частиц малого размера. Для стандартных набивных колонок оптимальный размер частиц 0,12-0,17 мм. Необходимо учитывать их близость к анализируемым соединениям. Для анализа полярных компонентов применяют полярные фазы, для анализа неполярных компонентов - менее полярные или полностью неполярные.

Неполярные фазы для газо-адсорбционной хроматографии силикагель, оксид алюминия, цеолиты, полимерные сорбенты ( например , полисорб, поропак и др.).

Наиболее употребляемые неподвижные жидкие фазы для газожидкостной хроматографии карбовакс, силиконовые элястомеры, апиезоны, твердый носитель - хроматов и др.

Подвижные фазы азот, гелий, аргон, пары воды.

Детекторы. История развития газовой хроматографии - это история появления и развития детекторов для хроматографии. Применятся несколько типов детекторов.

1. Детектор теплопроводности (ДТП) или катарометр. Принцип его действия основан на различии теплопроводностей анализируемого вещества и газа-носителя.

2. В детекторе ионизационо-пламенном (ПИД или ДИП) используется зависимость электропроводности пространства между электродами от числа находящихся в нем ионизированных частиц, которые образуются в водородном пламени под действием термических и окислительных процессов при попадании в него молекул анализируемого вещества. Выходным сигналом детектора является значение силы тока, протекающего между электродами под действием приложенного к ним напряжения.

3. Электронно-захватный детектор (ЭЗД),или детектор по захвату электронов, как и ДИП, основан на зависимости электропроводности промежутка между электродами и числим ионов, находящихся в этом промежутке, которое связано с числом молекул, поступающих в детектор. Однако механизм и способ образования ионов принципиально отличаются от такового в случае ДИП - ионы образуются в результате взаимодействия молекул анализируемого вещества и потока электронов в камере детектора в результате бета-распада радиоактивного вещества.

Необходим очень чистый газ-носитель, например азот “ОСЧ”, не содержащий следов кислорода, который снижал бы чувствительность детектора ЭЗД.

Чувствительность определения зависит от наличия галоид-, нитро- и других групп, взаимодействующих с электронами.

Влияние галоидов в молекуле на чувствительность определения

Вещество Чувствительность, отн.ед
Хлорбутан 1
Хлорпентан 2 1
Хлоргептан 1,5
Дихлорбутан 15
Дихлорэтан 190
Бромбутан 280
Хлороформ 6 10
Дибромметан 1.1 ё0

4. Детектор термоионный (ДТИ) по принципу действия аналогичен ДИП. Однако дополнительно в водородное пламя непрерывно поступает поток ионов щелочных металлов (калий, натрий, цезий). В их присутствии резко возрастает эффективность ионизации соединений, содержащих азот, фосфор, хлор и др. ДТИ применяют для определения ФОС и азотосодержащих соединений.

5. Пламенно-фотометрический детектор (ПФД) селективен и обладает повышенной чувствительностью по отношению к соединениям, содержащих серу.

Качественный анализ состоит в сравнении периодов времени удерживания данного вещества на хроматограмме от момента ввода пробы в испаритель до момента, соответствующего максимальному значению сигнала для данного компонента.

Количественный анализ основан на прямо пропорциональной зависимости содержания вещества в пробе от площади пика данного компонента на хроматограмме. Расчет ведется в основном тремя методами.

1. Метод абсолютной калибровки заключается в построении графиков зависимости высоты или площади пика Х от содержания компонентов в смеси. Расчет ведется по следующим формулам:

X= 1000 a/V

X = cV/V20,

Где

a - содержание вещества, определенное по графику; мг

V - объем пробы воздуха, вводимого в испаритель хроматографа, мл

с - концентрация вещества, рассчитанная по графику, мг/мл

V20 - объем пробы воздуха, произведенный в стандартных условиях.

2. Метод внутреннего стандарта основан на введении в анализируемую смесь известного количества вещества, принимаемого за стандарт. По своим свойствам оно должно быть достаточно близко к анализируемым соединениям, но полностью отличаться от них по хроматограмме.

3. Метод нормализации площадей пиков. При этом сумму площадей всех пиков с учетом поправочных коэффициентов принимают за 100%.Для вычисления концентрации вещества (в объемных процентах) необходимо его площадь умножить на 100 и разделить на сумму всех площадей. Метод прост, но может быть использован лишь тогда, когда все компоненты известны и полностью разделены.

Хроматографы состоят из основных блоков: Блок подготовки газов, термостат колонок (в том числе испаритель) ,детектор и регистратор (самописец).

Газожидкостная хроматография эффективна при анализе многокомпонентных смесей летучих органических веществ. Применение различных детекторов, например малоизбирательного детектора по теплопроводности – катарометра и избирательных – пламенно-ионизационного, электронного захвата позволяет достигать высокой чувствительности при определении высокотоксичных соединений.

Высокоэффективная жидкостная хроматография

ЭЖХ - хроматографический метод, позволяющий разделить высококипящие жидкости и (или) твердые вещества, которые затруднительно либо нецелесообразно определять метод газожидкостной хроматографии, например полициклические ароматические углеводороды, аминокислоты, ПАВ, пестициды, лекарственные препараты, углеводы и др.

Хроматограф состоит из:

колонок из нержавеющей стали, толстостенного стекла, тантала или меди; диаметр-1-6 мм, длина -от 10- 15 см до 7м;

пористых носителей: силикагель, хромосорб, биосил и др. с удельной площадью более 50 м/г и диаметр частиц 0,005-0,05 мм;

детекторов: рефрактометрической с чувствительностью 10 г/мл, УФ-детектор с чувствительностью 10 и флуориметрический с чувствительностью 10 г/мл, а также электрохимический;

подвижной фазы: ацетонитрил, метанол и др.

Высокоэффективную жидкостную хроматографию применяют при анализе смесей многих загрязняющих веществ.

Хроматомасс-спектрометрия

Используя высокочувствительные детекторы, спектрофотометрические, флуориметрические, можно определять очень малые количества веществ. При анализе смеси сложного состава особенно эффективно сочетание хроматографии с инфракрасной спектрометрией и особенно с масс-спектрометрией. (ХМС) - это в сущности газовая хроматография с масс-спектрометром в качестве детектора (например, МИ-1201). Обычно приборы такого типа оснащены мощным компьютером. Данный метод позволяет расшифровывать состав сложных смесей, содержащих сотни неидетифицированных компонентов, и определять их по одной пробе. Так определяют пестициды, диоксины, нитрозоамины и другие токсичные вещества.

Анализ атмосферного воздуха с помощью газоанализаторов

Газоанализаторы в отличие от стационарных приборов (хроматографы, полярографы и др.) не позволяют достигнуть столь же высокой чувствительности, точности и селективности. Однако при необходимости оперативного контроля содержания примесей загрязняющих веществ в атмосферном воздухе и особенно в воздухе рабочей зоны и в промышленных выбросах они могут быть полезны и необходимы. Для определения содержания SO2, NO2, CO и других газов в атмосферном воздухе применяют отечественные газоанализаторы различных типов: «Платон-1» (AsH3); «Гамма-М» (бензол); «Палладий-М3» (CO); «Нитрон» (NO2); «Сирена-2» (NH3).

Чтобы контролировать концентрацию загрязнителей меньше ПДК необходимы мощные информативные и чувствительные методы анализа, ибо «отсутствие компонента» еще не означает его действительное отсутствие. Возможно, концентрация настолько мала, что традиционными методами его определить невозможно. Действительно, охрана окружающей среды – вызов аналитической химии.

Характеристики наиболее применяемых и доступных отечественных газоанализаторов приведены в табл.1.

Таблица 1

Тип (марка) газоанализатора Измеряемые компоненты Предел обнаружения, мг/м
“Платан-1”
“Гамма-М”


Палладий-М3
Палладий-М6
ГМК-3
ГИП 10МБ-3А
666Э303
623 КПИ-03

645 ХЛ-03

“Нитрон”
“Сирена-2”
667 ФФ-03
As H3
Бензон С6H6
Винихлорид C2H3Cl
Дихлорэтан C2H4Cl2
Озон О3
СО
СО
СО
СО
Сероводород H2S
CH4
ECH
nCH
NO
NO2
NOX
NO2
NH3
SO2
0-0,2
0-12
0-28
0-12
0-12
0-40
0-40
0-40
0-50
0-20
0,1
0,1
0,1
0,001
0,001
0,001
0,5
0-30
0,001

Список литературы:

  1. Экология. (Учебник) Степановских А.С. (2001, 703с.)
  2. Экология. (Учебное пособие) Лебедева М.И., Анкудимова И.А. (2002, 80с.)
  3. Экология. (Учебник) Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. (2004, 3-е изд., 624с.)