Смекни!
smekni.com

Фитоиндикация загрязнений окружающей среды в условиях города (стр. 2 из 4)

Изменение направления, формы роста и ветвления. Примерами являются изменение направления роста корней у одуванчика при изменении уровня грунтовых вод, образование стелящихся побегов и ветвление у Dicranumpolysetum, кустовидная и подушечная форма роста деревьев, например лип, при устойчивом сильном загрязнении атмосферы HCl или

SO , изреживание кроны и изменение бонитета ствола у поврежденных дымом хвойных пород.

Ползучие главные оси побегов, тесно расположенные узкие листья, малая высота растений и хорошая запасающая способность, как правило, наблюдаются у растений на территориях с высокой концентрацией газообразных выбросов.

Изменения прироста по большей части неспецифичны, однако широко применяются для индикации, так как являются более чувствительным параметром, чем некрозы, и позволяют непосредственно определять снижение продуктивности используемых человеком растений. Измеряют главным образом изменение радиального прироста древесных стволов, прироста в длину побегов и листьев, длины корней.

Изменения плодовитости при действии антропогенных стрессоров наблюдаются у многих растений. В качестве примера можно назвать уменьшение продуктивности у черники в загрязненной газообразными выбросами атмосфере.

Микроскопические изменения.

Изменение размеров клетки. Примерами служат увеличение клеток смоляных ходов у сосен, поврежденных SO , уменьшение клеток эпидермиса листьев как реакция на газообразное загрязнение.

Изменения субклеточных структур, например блокирование плазмодесм, расширение цистерн эндоплазматического ретикулума, отложение под действием Zn сферического электроноплотного вещества в различных мембранах фасоли в гидропонной культуре, набухание тилакоидов у различных растений, обработанных SO , образование кристаллических включений в хлоропластах фасоли при воздействии газообразного хлора, грануляция плазмы и разрушение хлоропластов у деревьев, поврежденных SO и CL .

Плазмолиз. Отслаивание плазмы от клеточной стенки как следствие действия кислоты и SO. Еловая хвоя в областях, свободных от выхлопных газов, дает выпуклый плазмолиз (исключительно зимой), а хвоя в условиях загрязненного городского воздуха в течение всего года обнаруживает вогнутый плазмолиз.

Изменения степени ксероморфизма листьев как следствие газообразных выбросов и форма приспособления к ним выражаются в увеличении числа устьиц, толщины кутикулы, густоты опушения, толщины листа и степени суккулентности (отношения сырой вес: сухой вес).

Изменение структуры древесины: например, снижение качества сосновой древесины в результате незначительного ее образования летом и выпадения годичных колец при воздействии SO. Исчезновение годичных колец у мягкодревесинных пород под влиянием поваренной соли, применяемой для таяния льда, слабое одревеснение корней злаков при обработке гербицидами.

Проблема оценки морфологических изменений у растений.

При определении морфологических изменений желательно иметь некоторый опыт, чтобы не путать симптомы повреждений и уметь правильно оценивать воздействие климата, почвы, стадии развития и времени года. Некоторые естественные факторы могут вызвать симптомы, сходные с антропогенными нарушениями. Поэтому при работе с биоиндикаторами необходимо считаться с возможностью присутствия вредителей, а также учитывать предыдущие погодные условия. Воздействие климатических и эдафических факторов на устойчивость или на картину повреждения до сих пор почти не изучено. Имеются данные, что симптомы повреждения SO у ели и сосны ослабляются в результате применения удобрений. Влажность воздуха и освещенность влияют решающим образом на формирование некрозов при газовом загрязнении. При высокой влажности воздуха и почвы растения становятся особенно восприимчивыми; зимой явное снижение устойчивости вызывается повышением температуры. Пока еще слишком мало известно и о роли постоянно наблюдаемых кратковременных колебаний уровня атмосферного загрязнения. В большинстве случаев его воздействие усиливается пропорционально росту концентрации.

При 12-часовом воздействии 3 мг м SO у редиса повреждается только 2% поверхности листьев, а при трехчасовом воздействии 12 мг м SO - 77%.

Внутренние факторы тоже затрудняют оценку изменений у растений. Наблюдается различная чувствительность.

- на различных возрастных стадиях. При воздействии SO на стадии семядолей и после образования корнеплода у редиса повреждается свыше 85% листьев, а на стадии двух первых листьев – всего лишь 12%; зерновые, напротив, оказались наиболее восприимчивыми на стадии трех листьев;

- у органов различного возраста. Хвоя сосны особенно сильно поражается SO на первом году жизни, затем устьица закрываются. В случае гладиолусов при воздействии HFнаименьшее некротическое поражение наблюдается у наиболее молодых и старых листьев;

- в различное время дня и года (в зависимости от интенсивности обмена веществ, особенно ассимиляции при действии SO и роста при повреждении O ). К выбросам, содержащим SO, листья, как правило, примерно вчетверо более устойчивы ночью, чем днем; хвоя весной и летом значительно восприимчивее, чем осенью и зимой;

- у различных особей генетически неоднородных популяций. Здесь достоверность результатов обеспечивается применением обычных статистических методов (t-тест, u-тест, установление минимального размера выборки). Однако в результате быстрой эволюции может произойти адаптация к стрессору и индикаторы станут давать неверные данные.

- при различной предрасположенности. Еловая хвоя, предварительно подвергшаяся воздействию городского воздуха, значительно чувствительнее к SO, чем находившаяся в чистом воздухе. Возможна и физиологическая приспособленность к стрессору. Случайную предрасположенность нельзя исключить даже при генетически однородном растительном материале и одинаковых условиях культивирования. Поэтому при активном мониторинге для каждой контрольной площади необходимо несколько тест-растений.

Многообразие этих влияний показывает, что получить точные количественные данные о динамике и величине стрессовых воздействий на основе морфологических изменений, как правило, невозможно, зато довольно точно могут быть оценены биологические последствия, например масштабы потерь урожая.

Фитоиндикация загрязнения воздуха.

Чистый воздух как существенная предпосылка для нормального развития организмов содержит ряд веществ, которые повсюду на Земле представлены в равных объемных долях.

Присутствующие только в виде следов газы либо попадают из более высоких слоев атмосферы, либо являются результатом разложения и гниения отмерших организмов. Они могут возникать и вследствие погодных влияний. Поэтому изменения состава воздуха, отмечаемые на больших пространствах, не всегда вызваны действиями человека, они могут быть результатом биологических процессов в местах, не затронутых антропогенным влиянием. Так, например, над огромными площадями, занятыми хвойными лесами, происходит скопление терпенов и изопренов, над болотами скапливается

СН , над очагами гнилостных процессов – HSи NH, над морями и океанами – амины, СО, галогениды, NO, NH, сульфаты и нитраты. Вулканы выбрасывают весьма существенные количества SO, H, CO и HS. То же можно сказать о пыли и аэрозолях, состоящих из спор, пыльцы, органических и минеральных частиц, поднимаемых пыльными или песчаными бурями, а также поставляемых выбросами вулканического происхождения. Наконец, следует напомнить о саже и пепле от крупных пожаров. Все это присутствует в чистом воздухе в виде его непостоянных составляющих, появившихся без вмешательства человека.

Так что провести четкую грань между антропогенным и природным загрязнением воздуха не представляется возможным. И тем не менее остается непреложным тот факт, что загрязнение атмосферы веществами, которые до индустриализации вовсе отсутствовали или имелись в весьма незначительных количествах, за последние десятилетия приняло угрожающие размеры.

Антропогенное загрязнение воздуха отмечалось еще в средние века: уже тогда использование в качестве топлива каменного угля приводило к образованию вредных газов. В результате расширения и концентрации промышленных объектов и жилищных комплесков, а также с развитием транспорта во всех современных промышленно развитых странах загрязнение воздуха достигло таких масштабов, которые требуют принятия мер противодействия загрязнению и контроля за состоянием воздуха.

Загрязнение воздуха имеет место, когда одно или несколько загрязняющих воздух веществ или их смеси содержатся в воздухе в таких количествах и так длительно, что создают опасность для человека, животных, растений или имущества, способствуют нанесению ущерба или тем или иным образом отрицательно сказываются на самочувствии человека и состоянии его имущества. Для некоторых из этих веществ установлены предельно допустимые концентрации (ПДК) кратковременного (до 30 мин) и долговременного загрязнения (24 ч). Набор следовых веществ, загрязняющих воздух, очень широк. Следует назвать в первую очередь:

- газообразные неорганические вещества, такие, как SO , HS, NO , Cl , CO, SiF ;

- минеральные кислоты, такие, как HCl, HF, HSO , HNO ;

- радионуклиды, например стронцый-90, цезий-137, иод-129,

плутоний-240, радий 226, америций-241;

- простые органические вещества: альдегиды, эфиры, углеводороды, кетоны, фенолы, крезолы и т.д.;

- вещества с сильным запахом, например меркаптаны и амины;

- полициклические углеводороды, например 3,4-бензпирен и 1,12-бензперилен;