Смекни!
smekni.com

Высокомолекулярные флокулянты в процессах очистки природных и сточных вод (стр. 3 из 10)

При добавлении в воду поверхностно-активного вещества (ОП-10) значения D увеличиваются более существенно для флокулянта К, чем для флокулянта А. Очевидно, молекулы ОП-10, адсорбируясь на дисперсных частицах, способствуют локальной адсорбции макромолекул флокулянта К. Для флокулянта А отмечено уменьшение (в присутствии ОП-10) среднеквадратичных размеров макромолекулярных клубков в растворе (r2)1/2, которое уменьшало величину D.

На водоочистной станции г. Кемерово [36] проанализированы причины повышения содержания остаточного алюминия в питьевой воде, и для снижения этого показателя предложена замена реагентов – СА на гидроксосульфат алюминия (ГСА) и аммиачного ПАА на низкомолекулярный катионный флокулянт ВПК-402 (полидиметилдиаллиламмонийхлорид), выпускаемый ПО «Каустик» г. Стерлитамак. Опыты проводили на пилотной установке фирмы Preussag Noell при температуре воды 200 С. Были проанализированы два фильтроцикла при тех же дозах реагентов, что и на очистных сооружениях. На рис. 1.2 приведена зависимость мутности воды и концентрации остаточного алюминия в фильтрованной воде от времени для фильтроциклов по очистке р. Томи при использовании ГСА (2 мг·л–1 Al2O3) с ВПК-402 (0,2 мг·л–1), а также СА с ПАА в тех же дозах.


Рис. 1.2 - Зависимость мутности воды N (мг·л–1) (1-3) и концентрация остаточного алюминия в фильтрованной воде с Al (мг·л–1) (4) от времени t (ч) для фильтроциклов по очистке р. Томи на пилотной установке фирмы Preussag Noell, а - для гидроксосульфата алюминия (2 мг·л–1 Al2O3) и ВПК-402 (0.2 мг·л–1); б - для сульфата алюминия (2 мг·л-1 Al2O3) и ПАА (0,2 мг·л–1). Вода: 1 - исходная, 2 – осветлённая, 3 – фильтрованная

Фильтроцикл на пилотной установке с применением СА и ПАА хорошо моделировал работу очистных сооружений. Мутность воды после отстойника не отличалась от исходной, а после фильтров – сохранялась на уровне 2 мг·л–1, что свидетельствует о неэффективной работе установки. При применении ГСА и ВПК-402 обеспечивалась лучшая работа отстойника и качество фильтрованной воды соответствовало требованиям нормативов по мутности. Содержание остаточного алюминия не превышало 0,1 мг·л–1, тогда как при использовании СА с аммиачным ПАА его величина равнялась 0,2 мг·л–1.

В работе [37] приведены результаты очистки воды р. Дон на водопроводной станции г. Ростова-на-Дону с использованием катионного флокулянта ВПК-402, который применяли как единственный реагент с марта 1994 г. При введении флокулянта в камеры хлопьеобразования осветление воды в отстойниках было слабым, а мутность очищенной воды намного превышала нормы качества питьевой воды. Поэтому флокулянт стали вводить во всасывающие линии насосов на промежуточной насосной станции подкачки, расположенной в 3 км от очистных сооружений. При этом взаимодействие флокулянта с коллоидными загрязнениями в воде проходило уже в трубах и повышало мутность очищаемой воды по сравнению с речной водой, что способствовало последующему эффективному осветлению воды в отстойниках. В табл. 1.6 приведены результаты осветления воды коагулянтом (1993 г) и флокулянтом (1995 г), а в табл. 1.7 сведены показатели качества водоочистки.

Согласно данным табл. 1.6 и 1.7, флокулянт ВПК-402 по сравнению с коагулянтом СА обеспечивал более глубокий и устойчивый в течение всего года эффект осветления воды в отстойниках и фильтрах. Дозирование флокулянта ВПК-402 в воду без разбавления позволило упростить и удешевить конструкцию реагентного хозяйства и его эксплуатацию.

Таблица 1.6 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону

В среднем за год Доза реагентов, мг·л–1 Мутность воды, мг·л–1
ВПК-402 сульфат алюминия исходной в смесителе после отстойника очищенной
1993 - 19,9 12,5 12,2 5,3 1,1
1995 0,23 - 13,3 7,7 3,7 0,96

По данным табл. 1.7 замена коагулянта СА на флокулянт ВПК-402 снизила содержание в очищенной воде остаточного алюминия, а остальные показатели очищенной воды изменялись одинаково. По сравнению с СА при использовании флокулянта ВПК-402 требуемый эффект очистки воды обеспечивался меньшими на порядок дозами.

Испытания катионного флокулянта ВПК-402 на водозаборе г. Новосибирска, проведенные в осенний паводок, показали его высокую эффективность при низкой температуре воды [38].

Влияние флокулянтов – анионного Магнафлока LT27 и катионного Магнифлока LT 573C совместно коагулянтом СА на цветность и мутность очистки воды р. Днепр в условиях Днепровской водопроводной станции г. Киева рассмотрено в работах [22]. Опыты проведены по методике пробного контактного коагулирования-флокулирования [39]. При дозе СА 5 мг·л–1 повышение степени осветления и обесцвечивания воды обеспечивалось лишь небольшими дозами (0,01 – 0,05 мг·л–1) Магнафлока LT27, а превышение этих доз увеличивало цветность очищенной воды (см. табл. 1.8). Магнифлок LT 573С в малых дозах повышал цветность воды и только при больших дозах – 0,5 – 1,25 мг·л–1 (при дозе коагулянта 2,5 – 5,0 мг·л–1) снижал мутность и цветность очищенной воды (см. табл. 1.9). Предварительное озонирование и хлорирование воды не повышало эффективность водоочистки.

Таблица 1.7 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону

Показатели Среднегодовые данные
1993 г. (сульфат алюминия) 1995 г. (ВПК-402)
р. Дон Вода очищенная р. Дон Вода очищенная
Цветность, град 17 7 18 8
рН 8,2 7,8 8,1 7,8
Сухой остаток, мг·л–1 928 924 781 780
Жесткость общая, мг·л–1 7,75 7,75 6,57 6,57
Щелочность, мг·л–1 3,6 3,4 3,4 3,3
Хлориды, мг·л–1 154 156 115 117
Сульфаты, мг·л–1 280 278 230 229
Аммиак, мг·л–1 0,37 0,13 0,43 0,15
Нитриты, мг·л–1 0,058 0,003 0,0057 0,005
Нитраты, мг·л–1 3,88 3,03 3,59 2,75
Железо, мг·л–1 0,40 0,17 0,58 0,23
Алюминий, мг·л–1 0,07 0,18 0,07 0,08
Цинк, мг·л–1 0,012 0,009 0,009 0,001
Медь, мг·л–1 0,021 0,016 0,020 0,016
Марганец, мг·л–1 0,054 0,028 0,110 0,084
Нефтепродукты, мг·л–1 0,15 0,05 0,100 0,05

Таблица 1.8 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 3°С

Дозы реагентов, мг·л–1 Очищенная вода
Al2(SO4)3 Магнафлок LT Цветность, град Мутность, мг·л–1
0 0 23,0 0,5
0,02 0 21,0 0,5
0,02 0,01 18,0 0,3
0,02 0,02 18,0 0
0,02 0,05 18,0 0
0,02 0,07 21,0 0
0,02 0,10 21,0 0
0,02 0,30 22,0 0

Таблица 1.9 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С

Дозы реагентов, мг·л–1 Очищенная вода
Al2(SO4)3 Магнафлок LT Цветность, град Мутность, мг·л–1
0 0 23,0 4,0
0,02 0 18,0 0,4
0,02 0,015 15,0 0,4
0,02 0,025 15,0 0,4
0,02 0,050 15,0 0,4
0,02 0,150 15,0 0,4
0,02 0,250 15,0 0,4
0,02 0,500 14,5 0,4

В работе [40] оценено качество очистки воды из поверхностных источников в питьевой водоподготовке при совместном использовании СА и различных флокулянтов – катионных Праестолов 611 и 650 (сополимеры АА с N-акриламидопропил-N,N,N-триметиламмонийхлоридом), анионных Праестолов 2530 и 2540, ПАА производства г. Ленинск-Кузнецкий, неионного ПАА АО «Бератон» (г. Березники), неионного ПАА Н-600 производства Завода им. С.М. Кирова (г. Пермь) и композиционного коагулянта-флокулянта КФ-91 производства КПП г. Волжский. Отмечено наиболее эффективное снижение остаточного алюминия и фитопланктона в воде, а также увеличение скорости седиментации при использовании Праестола 650 в весенний и летний периоды года и Праестола 2515 в зимних условиях (оптимальные дозы флокулянтов составляли 0,05 – 0,2 мг·дм–3).

Результаты опытно-промышленных испытаний бинарных реагентов – СА и ОХА с Праестолом 650 и ПАА Н-600 при водоочистке на водопроводной станции г. Екатеринбурга показаны в табл. 1.10.

Таблица 1.10 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С

Показатели Двухступенчатая очистка Контактное коагулирование
К21 К22 К11 К12 К21 К2 К11 К1
Цветность 84,3 76,3 82,4 70,0 80,5 72,4 79,5 70,0
Мутность 72,1 65,5 69,5 64,5 78,0 74,0 60,4 55,4
Окисляемость 69,7 61,3 64,4 62,2 73,0 62,0 69,9 55,9
Железо (общ.) 86,2 79,4 84,5 80,3 83,2 78,0 77,9 75,4
ХПК 51,2 35,1 48,2 40,1 58,9 45,2 48,6 39,8
Гуминовые кислоты 57,6 41,4 53,5 44,7 56,3 44,3 55,1 43,8
Фульвокислоты 50,6 45,3 48,2 43,0 54,4 47,0 42,8 39,6

Обработка воды Праестолом 650 по сравнению с ПАА Н-600 позволила в 2,5 – 3 раза снизить расход флокулянта и получить очищенную воду, качество которой соответствует нормативным показателям. Сочетание при водоочистке Праестола 650 с СА или ОХА обеспечило более высокую очистку воды по цветности, ХПК, окисляемости, содержанию железа, гуминовых и фульвокислот. Содержание статочного алюминия снижено до минимального предела обнаружения в воде, доза коагулянта снижена на 10 – 15% и увеличена производительность очистных сооружений за счет более высокой степени очистки воды.