Смекни!
smekni.com

Понятие и сущность биогеоценоза (стр. 2 из 5)

3. Биогеохимические круговороты веществ в биосфере

3.1 Круговорот углерода

В ходе фотосинтеза атомы углерода переходят из состава углекислого газа CO2 в состав глюкозы и других органических веществ растительных клеток. Далее они переносятся по пищевым цепям, образуя ткани всех остальных живых существ экосистемы. Однако побывать в составе клеток живых организмов всех трофических уровней удается только малому числу атомов углерода, так как на каждом уровне большинство органических молекул расщепляется в процессе клеточного дыхания для получения энергии. После этого атомы углерода поступают в абиотическую часть окружающей среды в составе углекислого газа, чем завершается один цикл и создаются предпосылки начала другого цикла (Рис.2).

Рисунок 2- «Структурная схема круговорота углерода»

Аналогичным образом углерод возвращается в атмосферу при сжигании любых органических соединений, например древесины, сухой травы или листьев, а также ископаемого топлива.

Вывод части углерода из естественного круговорота экосистемы и «резервирование» в виде ископаемых запасов органического вещества в недрах Земли является важной особенностью рассматриваемого процесса. В далекие геологические эпохи значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, нм редуцентами, а накапливалась в виде детрита. Позже слои детрита были погребены под слоями различных минеральных осадков, где под действием высоких температур и давления за миллионы лет превратились в нефть, уголь и природный газ. Подобные процессы протекают и в настоящее время, но значительно менее интенсивно. Их результат- образование торфа.

В водных экосистемах прерывание круговорота углерода связано с включением СО2 в состав известняков, мела, кораллов в виде Са(СО)3. при этом углерод исключается из круговорота на целые геологические эпохи.

3.2 Круговорот фосфора

Из всех макроэлементов фосфор - один из самых редких в доступных резервуарах на поверхности Земли. В природе он содержится в различных природных материалах в виде неорганического фосфат-иона (РО3-4). Фосфаты растворимы в воде, но не летучи. При разрушении горных пород или выщелачивании атмосферными осадками соединения фосфора растворяются. Далее из водного раствора поглощается растениями и включается в состав их органических соединений, выступая в дальнейшем в форме «органического фосфата».

По пищевым цепям фосфор последовательно переходит от растений к организмам всех трофических уровней, и аналогично углероду в каждом из организмов велика вероятность окисления с целью получения необходимой для жизнедеятельности энергии. Если это происходит, то фосфат в составе мочи или ее аналога выводится из организма в окружающую среду, где может снова быть поглощен растениями и вновь запущен в круговорот(Рис.3).

Принципиально различие круговоротов фосфора и углерода состоит в наличии либо отсутствии газовой фазы на одном из этапов цикла. Диоксид углерода в газообразном состоянии, попадая в воздух, свободно распространяется в атмосфере, переносясь на неорганиченные расстояния, пока снова не будет усвоен растениями. В круговороте фосфора подобного этапа нет.

Попадая со сточными водами в водоемы, фосфат насыщает, а порой перенасыщает их экологические системы. Обратно на сушу фосфор в естественных условиях возвращается практически только с пометом и после гибели рыбоядных птиц. Абсолютное большинство фосфатов образует донные отложения, и круговорот вступает в свою самую замедленную фазу. Лишь геологические процессы, протекающие миллионы лет, реально могут поднять океанические отложения фосфатов, после чего возможно повторное включение фосфора в описанный круговорот.


Рисунок 3 – «Структурная схема круговорота фосфора»

Фосфор и другие минеральные биогены циркулируют в пределах экосистемы лишь тогда, когда содержащие их «отходы» жизнедеятельности откладываются в местах поглощения соответствующего элемента. В естественных экосистемах преимущественно так и происходит. Однако вмешательство человека, заключающееся в сборе урожая, содержащего извлеченные из почвы биогены, и перемещение его на большие расстояния к местам потребления нарушает круговорот. Отходы жизнедеятельности человека попадают преимущественно в водоемы. Изъятие фосфора из почв полей в современном сельском хозяйстве компенсируется внесением минеральных фосфорных удобрений, получаемых из природных апатитов, главным месторождением которых в нашей стране является Хибинское. Всего в мире ежегодно добывают 1-2 млн. т фосфорсодержащих пород[3].

3.3 Круговорот азота

Азот входит в структуру всех белков и вместе с тем является наиболее литимирующим из биогенных элементов. Колоссальный резерв свободного молекулярного азота в атмосфере лишь в ничтожном размере затрагивается биотическим круговоротом. Общее отношение связанного азота к N2 в природе равно 1:100000. энергия химической связи в молекуле N2очень велика. Поэтому соединение азота с другими элементами- кислородом и водородом требует больших затрат энергии.

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальных температуре и давлении благодаря высокой эффективности биокатализатора. Считается, что бактерии переводят в связанную форму приблизительно 1млрд т азота в год. В клубеньковых бактериях бобовых растений фиксация азота осуществляется с помощью сложного ферментного комплекса, защищенного от избытка кислорода специальным растительным гемоглобином. Непосредственно продукт биофиксации- аминогруппа NH2 - включается в круговорот, в котором участвуют уже все организмы, но главную роль играют еще три группы почвенных и водных бактерий: нитрифицирующие, нитратообразующие и денитрифицирующие бактерии(Рис.4)

Промышленная фиксация



Рисунок 4 – «Круговорот азота»

Круговорот азота в биосфере сопряжен с круговоротом углерода, так как соотношение между этими элементами в составе глобальной биомассы постоянно: С : N= 55 : 1. Соответственно и круговорот азота составляет около 1,5 Гт/год. Он замкнут настолько, насколько постоянны общая биомасса и состав экосферы, так как доступные для биоты резервуары связанного азота в почве и в воде достаточно велики по сравнению с круговоротом: приблизительно 40:1.[4]

3.4 Круговорот кислорода

В количественном отношении главной составляющей живой материи является кислород, круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления. В результате возникает множество локальных циклов, происходящих между атмосферой, гидросферой и литосферой.

Кислород, содержащийся в атмосфере и в поверхностных минералах (осадочные кальциты, железные руды), имеет биогенное происхождение и должно рассматриваться как продукт фотосинтеза. Этот процесс противоположен процессу потребления кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом (отщеплённым от субстрата) и образованием воды. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа. В основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды гидросферы были подвергнуты фотолизу и вновь синтезированы живыми организмами, необходимо два миллиона лет. Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в виде газа или сульфатов, растворённых в океанических и континентальных водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень токсичен для клеток и тканей (даже у аэробных организмов). А живой анаэробный организм не может выдержать (это было доказано ещё в прошлом веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

3.5 Круговорот воды

Вода, как и воздух, - основной компонент, необходимый для жизни. В количественном отношении это самая распространённая неорганическая составляющая живой материи. Семена растений, в которых содержание воды не превышает 10%, относятся к формам замедленной жизни. Такое же явление (ангидробиоз) наблюдается у некоторых видов животных, которые при неблагоприятных внешних условиях могут терять большую часть воды в своих тканях.