Смекни!
smekni.com

Закономерности устойчивости почв к деградации под влиянием сельскохозяйственного использования (стр. 28 из 37)

Биологическое разложение пестицидов

Биологическое разложение пестицидов осуществляется бактериями, актиномицетами, грибами и высшими растениями. Способность к трансформации и детоксикации пестицидов в наибольшей степени выражена у бактерий, затем у актиномицетов и грибов. При этом продолжительность разложения пестицидов микроорганизмами может колебаться от нескольких дней до нескольких месяцев и иногда десятков лет, в зависимости от специфики пестицида, видов микроорганизмов, свойств почв. Отдельные пестициды разлагаются и определенными группами микроорганизмов.

Ниже приведено описание процессов взаимодействия микроорганизмов с пестицидами по Галиулину (1998). Сразу же после поступления ксенобиотика в среду отмечается лаг-фаза (фаза приспособления), в процессе которой клетки адаптируются к пестициду. К концу лаг-фазы начинается разложение клеток, причем удельная скорость роста культуры достигает максимальной величины в экспоненциальной фазе. По мере утилизации клетками ксенобиотика и накопления метаболитов скорость роста микроорганизмов тормозится; культура вступает в фазу замедления роста или отрицательного ускорения. Из этой фазы культура переходит в стационарную, в которой количество клеток остается постоянным. Наконец, в фазе отмирания культуры уменьшается количество живых клеток, их общая масса падает в результате процессов автолиза (Печуркин, Терсков, 1973; Карасевич, 1982).

В полевых условиях у смешанной почвенной популяции этот процесс усложняется различными биоценотическими отношениями (мутуализм, компенсализм, хищничество) и изменением экофакторов (Звягинцев, Голимбет, 1983). Для почвенных условий характерно одновременное воздействие на ксенобиотик сообщества микроорганизмов (явление компенсализма). Способность к биодеградации пестицидов у почвенных микробных сообществ чаще выше, чем у чистых культур. Одни микроорганизмы осуществляют первичную трансформацию ксенобиотика, другие ее продолжают, а третью завершают деструкцию. Почвенные микроорганизмы быстрее деструктируют единственный пестицид, по сравнению со смесью нескольких веществ, резко различающихся по структуре.

Считают, что микробная деградация пестицидов в почве осуществляется двумя путями. Первый путь характеризуется убылью субстрата под воздействием конститутивных ферментов микробной клетки без какой-либо лег-фазы. Подобным образом разлагаются в почве все природные соединения, а также такие пестициды, как ДНОК, линурон, симазин. Второй путь микробного разложения пестицида характеризуется или отсутствием деструкции или очень медленным его разложением на первом этапе (лаг-фаза), в процессе которого происходит индукция ферментов. Затем процесс разложения осуществляется довольно быстро. При этом синтез индуцибильных ферментов может быть детерминирован возникновением мутаций по генам, контролирующим отдельные этапы деградации пестицида, интенсивной перестройкой внехромосомного генетического материала (плазмид) или возникновением гибридных плазмид (Боронин, 1984).

В ответ на воздействие некоторых ксенобиотиков микроорганизмы, подобно другой биоте, реагируют усилением продуцирования гидролитических ферментов и повышением их специфической активности. Образовавшиеся при этом индуцибильные ферменты повышают способность организма детоксицировать пестицид, который может выступать в роли самоиндуктора биотрансформации и в качестве индуктора биоразложения сходных по структуре соединений. Индукция почвенными микроорганизмами ферментов, способствующих разложению пестицидов, с одной стороны, ведет к самоочищению почвы. С другой стороны, при ярком проявлении этого процесса приходится применять все большие дозы пестицидов.

Для прогноза поведения гербицидов в почвах необходимо учитывать протекающие почвенные и почвообразовательные процессы. Так, например, Сюняев Х.Х. (1984) показал, что при наличии испарения влаги с поверхности почвы происходит подтягивание к поверхности симазина при увеличении его концентрации в 5 раз. В то же время при поверхностном внесении симазина на черноземах даже на склоне 0,050 отмечалось его смывание до 25% от сохранившегося в почве вещества. Причиной фитотоксического последствия на растения симазина являлись его необратимо сорбированная форма, симазин в составе растительных остатков и гумусовых веществ. При этом устойчивость этом форм определялась протекающими почвообразовательными процессами.

Предельно допустимые концентрации

Оценка токсичности для человека и теплокровных животных

При оценке токсичности пестицидов обычно учитывают минимальные дозы, вызывающие смертность 50% подопытной группы организмов (ЛД50). По токсичности для человека и теплокровных животных выделяют: сильнодействующие пестициды ЛД50 до 50 мг/кг живой массы (бромистый метил и др.); высокотоксичные ЛД50 до 200 мг/кг (базудин и др.); среднетоксичные – ЛД50 до 1000 мг/кг (медный купорос и др.); малотоксичные ЛД50 более 1000 мг/кг (бордосская жидкость, сера, витавакс, диален, неорон и др.).

По степени комплексного действия на организм выделяют пестициды чрезвычайно опасные, высоко опасные, умеренно опасные, малоопасные. При комплексной экотоксикологической оценке пестицидов учитывают летучесть, разлагаемость, токсичность для теплокровных животных, миграционную способность, коэффициент биологического накопления и т.д. Среди почвенной биоты наиболее чувствительны к воздействию пестицидов микроводоросли, нитрификаторы, азотфиксаторы, деструкторы целлюлозы, симбионты.

Следует отметить, что, хотя токсиколого-гигиенические и другие требования к новым препаратам постоянно ужесточаются, тем не менее, ни об одном из них нельзя с уверенностью сказать, что его применение абсолютно безвредно для живой природы (Минеев В.Г., 1990). Именно поэтому по рекомендациям ВОЗ маленьким детям, больным и выздоравливающим следует употреблять пищу, абсолютно свободную от каких-либо остатков пестицидов.

В настоящее время в определенной степени изучены основные закономерности поведения пестицидов в почве и в растениях, но недостаточно выяснено их превращение в объектах окружающей среды при комплексном совместном или последовательном применении пестицидов с удобрениями, регуляторами роста и другими современными средствами химизации (Минеев В.Г., 1990). Пестициды и их остатки могут прочно связываться в почве, и обычными методами при контроле содержания их остатков не определяться. В то же время предельно допустимые концентрации разработаны с учетом обычной диеты человека, т.е. с учетом возможного количества потребляемого продукта. Однако, в разных странах и для отдельных групп населения диеты неодинаковы, они отличаются и по сезонам года. Поэтому предельно допустимые концентрации в разных странах значительно отличаются. Большая опасность заключается во взаимодействии остатков различных токсикантов.

16. Загрязнение почв тяжелыми металлами, как фактор их деградации

Значимость проблемы

Загрязнение почв тяжелыми металлами представляет большую народнохозяйственную и экологическую проблему. Тяжелые металлы из почв мигрируют в грунтовые воды и водоемы, а затем потребляются человеком с питьевой водой. Они поступают в растения и, в дальнейшем. Попадают в продукты питания растительного и животного происхождения. Частично, тяжелые металлы попадают из почв с испарением и из растений с транспирацией в воздушную среду, а затем через органы дыхания в организм человека. Небезопасны для биоты и человека и физические поля, трансформированные и отраженные скоплениями тяжелых металлов. Под действием тяжелых металлов происходит угнетение практически всего растительного и почвенного мира суши и водоемов. При этом часть изменений накапливается и действует на биоту на генетическом уровне. Считается, что образ жизни определяет 49-53% здоровья и продолжительности жизни, генетические факторы – 18-22%; загрязнение – 17-20%; медицинские факторы – 17-20%.

При этом, к сожалению, уровень загрязнения почв тяжелыми металлами все время возрастает. Считается, что каждый житель Земли ежедневно производит в среднем 2-4 кг отходов и мусора. И эта антропогенная нагрузка будет возрастать, что видно на примере высокоразвитых стран. Для примера, в 1972 году только 6% населения земного шара в США производили 70% твердых отходов и остатков (Commoner, 1972). Большие уровни поступления в почву токсикантов отмечаются и для отдельных районов России. Так, например, в Тульской области ежегодный выброс вредных веществ в атмосферу составлял в 1991 г. 600 тысяч тонн, в реки – 419 млн. м2 (Дмитриев А.В., Сычев А.И., 1997).

Значительное количество тяжелых металлов поступает в почву и при их сельскохозяйственном использовании. По оценке ЦИНАО к 1990 году с фосфорными удобрениями, в целом, в СССР внесено в почву 16633 т свинца, 3200 т кадмия, 533 т ртути. Уровень воздействия тяжелых металлов на агроэкосистемы иллюстрируется следующими примерами. Учватовым В.П. (1994) отмечается, что в агроэкосистемах южного Подмосковья суммарная полиметаллическая нагрузка составляет - 441-1162 мг/м2 железа, 40-83 – марганца,44-95 – цинка, 4,1-9,6 – никеля, 4,9-1,3 – свинца, 0,15-1,2 мг/м2 – кадмия. В Тульской области ежегодно на 1 м2 поверхности с жидкими атмосферными осадками и пылью поступает: в заказнике «Тульские засеки» – 400-540 мг Fe; 36-137 – Mn; 56-69 – Zn; 4-7,5 – Ni; 1,7-3,5 – Pb; 0,12-0,15 мг Cd; в агроэкосистемах соответственно 185-620; 12-30; 21-47; 1,8-5; 4,3-11 и 0,1-1,0 мг. Вблизи источника загрязнения накопление свинца в почве достигает 545 мг/кг, цинка 158 мг/кг; меди –118; а на расстоянии 10 км соответственно 50, 3 и 9 мг/кг (Реуце К., 1986). ПО данным автора, вдоль дорог содержание свинца может достигать 300 мг/кг.