Смекни!
smekni.com

Особенности метода кластерный анализ при большом количестве наблюдений кластерный анализ метод (стр. 2 из 5)

Выбор начальных центров осуществляется следующим образом:

1. выбор k-наблюдений для максимизации начального расстояния;

2. случайный выбор k-наблюдений;

3. выбор первых k-наблюдений.

2. Итеративный процесс

Вычисляются центры кластеров, которыми затем считаются покоординатные средние кластеров. Объекты перераспределяются.

Процесс вычисления центров и перераспределения объектов продолжается до тех пор, пока не выполнено одно из условий:

1. кластерные центры стабилизировались, т.е. все наблюдения принадлежат кластеру, которому принадлежали до текущей итерации;

2. число итераций равно максимальному числу итераций.

На рис. 1 приведен пример работы алгоритма k-средних для k, равного двум.

Рис. 1. Пример работы алгоритма k-средних (k=2) [5. с-68-73]

1.1.2. Проверка качества кластеризации

После получений результатов кластерного анализа методом k-средних следует проверить правильность кластеризации (т.е. оценить, насколько кластеры отличаются друг от друга). Для этого рассчитываются средние значения для каждого кластера. При хорошей кластеризации должны быть получены сильно отличающиеся средние для всех измерений или хотя бы большей их части.

Достоинства алгоритма k-средних:

1. простота использования;

2. быстрота использования;

3. понятность и прозрачность алгоритма.

Недостатки алгоритма k-средних:

1. алгоритм слишком чувствителен к выбросам, которые могут искажать среднее. Возможным решением этой проблемы является использование модификации алгоритма - алгоритм k-медианы;

2. алгоритм может медленно работать на больших базах данных.

Возможным решением данной проблемы является использование выборки данных. [8. с-6]

1.2. АлгоритмPAM (partitioning around Medoids)

PAM является модификацией алгоритма k-средних, алгоритмом k-медианы (k-medoids). Алгоритм менее чувствителен к шумам и выбросам данных, чем алгоритм k-means, поскольку медиана меньше подвержена влияниям выбросов. PAM эффективен для небольших баз данных, но его не следует использовать для больших наборов данных.

1.3. Сложности, возникающие при кластерном анализе

Как и любые другие методы, методы кластерного анализа имеют определенные слабые стороны, т.е. некоторые сложности, проблемы и ограничения.

При проведении кластерного анализа следует учитывать, что результаты кластеризации зависят от критериев разбиения совокупности исходных данных. При понижении размерности данных могут возникнуть определенные искажения, за счет обобщений могут потеряться некоторые индивидуальные характеристики объектов.

Существует ряд сложностей, которые следует продумать перед проведением кластеризации.

1. Сложность выбора характеристик, на основе которых проводится кластеризация. Необдуманный выбор приводит к неадекватному разбиению на кластеры и, как следствие, - к неверному решению задачи.

2. Сложность выбора метода кластеризации. Этот выбор требует неплохого знания методов и предпосылок их использования. Чтобы проверить эффективность конкретного метода в определенной предметной области, целесообразно применить следующую процедуру: рассматривают несколько априори различных между собой групп и перемешивают их представителей между собой случайным образом. Далее проводится кластеризация для восстановления исходного разбиения на кластеры. Доля совпадений объектов в выявленных и исходных группах является показателем эффективности работы метода.

3. Проблема выбора числа кластеров. Если нет никаких сведений относительно возможного числа кластеров, необходимо провести ряд экспериментов и, в результате перебора различного числа кластеров, выбрать оптимальное их число.

4. Проблема интерпретации результатов кластеризации. Форма кластеров в большинстве случаев определяется выбором метода объединения. Однако следует учитывать, что конкретные методы стремятся создавать кластеры определенных форм, даже если в исследуемом наборе данных кластеров на самом деле нет. [5. с-68-73]

1.4. Сравнительный анализ иерархических и неиерархических методов кластеризации

Неиерархические методы выявляют более высокую устойчивость по отношению к шумам и выбросам, некорректному выбору метрики, включению незначимых переменных в набор, участвующий в кластеризации. Ценой, которую приходится платить за эти достоинства метода, является слово "априори". Аналитик должен заранее определить количество кластеров, количество итераций или правило остановки, а также некоторые другие параметры кластеризации. Это сложно начинающим специалистам.

Если нет предположений относительно числа кластеров, рекомендуют использовать иерархические алгоритмы кластерного анализа. Однако если объем выборки не позволяет это сделать, возможный путь - проведение ряда экспериментов с различным количеством кластеров, например, начать разбиение совокупности данных с двух групп и, постепенно увеличивая их количество, сравнивать результаты. За счет такого "варьирования" результатов достигается достаточно большая гибкость кластеризации.

Иерархические методы, в отличие от неиерархических, отказываются от определения числа кластеров, а строят полное дерево вложенных кластеров. Сложности иерархических методов кластеризации: ограничение объема набора данных; выбор меры близости; негибкость полученных классификаций. Преимущество этой группы методов в сравнении с неиерархическими методами - их наглядность и возможность получить детальное представление о структуре данных.

Глава 2. Алгоритмы кластерного анализа

В последнее время ведутся активные разработки новых алгоритмов кластеризации, способных обрабатывать сверхбольшие базы данных. В них основное внимание уделяется масштабируемости. К таким алгоритмам относятся обобщенное представление кластеров (summarized cluster representation), а также выборка и использование структур данных, поддерживаемых нижележащими СУБД. Разработаны алгоритмы кластерного анализа, в которых методы иерархической кластеризации интегрированы с другими методами. К таким алгоритмам относятся: BIRCH, CURE, CHAMELEON, ROCK. [5. с-68-73]

2.1. Алгоритм BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

Алгоритм предложен Тьян Зангом и его коллегами. Благодаря обобщенным представлениям кластеров, скорость кластеризации увеличивается, алгоритм при этом обладает большим масштабированием. В этом алгоритме реализован двухэтапный процесс кластеризации.

В ходе первого этапа формируется предварительный набор кластеров. На втором этапе к выявленным кластерам применяются другие алгоритмы кластерного анализа - пригодные для работы в оперативной памяти.

Если каждый элемент данных представить себе как бусину, лежащую на поверхности стола, то кластеры бусин можно "заменить" теннисными шариками и перейти к более детальному изучению кластеров теннисных шариков. Число бусин может оказаться достаточно велико, однако диаметр теннисных шариков можно подобрать таким образом, чтобы на втором этапе можно было, применив традиционные алгоритмы кластерного анализа, определить действительную сложную форму кластеров.

2.2. Алгоритм WaveCluster

WaveCluster представляет собой алгоритм кластеризации на основе волновых преобразований. В начале работы алгоритма данные обобщаются путем наложения на пространство данных многомерной решетки. На дальнейших шагах алгоритма анализируются не отдельные точки, а обобщенные характеристики точек, попавших в одну ячейку решетки. В результате такого обобщения необходимая информация умещается в оперативной памяти. На последующих шагах для определения кластеров алгоритм применяет волновое преобразование к обобщенным данным.

Особенности WaveCluster:

сложность реализации

алгоритм может обнаруживать кластеры произвольных форм

алгоритм не чувствителен к шумам

алгоритм применим только к данным низкой размерности

2.3. Алгоритмы кластерного анализа Clarans, CURE, DBScan

Алгоритм Clarans (Clustering Large Applications based upon RANdomized Search) формулирует задачу кластеризации как случайный поиск в графе. В результате работы этого алгоритма совокупность узлов графа представляет собой разбиение множества данных на число кластеров, определенное пользователем. "Качество" полученных кластеров определяется при помощи критериальной функции. Алгоритм Clarans сортирует все возможные разбиения множества данных в поисках приемлемого решения. Поиск решения останавливается в том узле, где достигается минимум среди предопределенного числа локальных минимумов.

2.4. Алгоритм CLARA (Clustering LARge Applications)

Алгоритм CLARA был разработан Kaufmann и Rousseeuw в 1990 году для кластеризации данных в больших базах данных. Данный алгоритм строится в статистических аналитических пакетах, например, таких как S+.

Изложим кратко суть алгоритма. Алгоритм CLARA извлекает множество образцов из базы данных. Кластеризация применяется к каждому из образцов, на выходе алгоритма предлагается лучшая кластеризация.

Для больших баз данных этот алгоритм эффективнее, чем алгоритм PAM. Эффективность алгоритма зависит от выбранного в качестве образца набора данных. Хорошая кластеризация на выбранном наборе может не дать хорошую кластеризацию на всем множестве данных. [9. с-3].

2.5. Итеративная кластеризация в SPSS

Обычно в статистических пакетах реализован широкий арсенал методов, что позволяет сначала провести сокращение размерности набора данных (например, при помощи факторного анализа), а затем уже собственно кластеризацию (например, методом быстрого кластерного анализа). Рассмотрим этот вариант проведения кластеризации в пакете SPSS.

Выбираем в меню: Analyze (Анализ) / Data Reduction (Преобразование данных) / Factor (Факторный анализ). При помощи кпопки Extraction (Отбор) следует выбрать метод отбора. Мы оставим выбранный по умолчанию анализ главных компонентов, который упоминался выше. Таже следует выбрать метод вращения - выберем один из наиболее популярных - метод варимакса. Для сохранения значений факторов в виде переменных в закладке "Значения" необходимо поставить отметку "Save as variables" (Сохранить как переменные).