регистрация / вход

The Heart Essay Research Paper CONTENTS3

The Heart Essay, Research Paper CONTENTS 3 Introduction 4 The Human Heart 5 Symptoms of Coronary Heart Disease 5 Heart Attack 5 Sudden Death 5 Angina 6 Angina Pectoris

The Heart Essay, Research Paper

CONTENTS

3 Introduction

4 The Human Heart

5 Symptoms of Coronary Heart Disease

5 Heart Attack

5 Sudden Death

5 Angina

6 Angina Pectoris

6 Signs and Symptoms

7 Different Forms of Angina

8 Causes of Angina

9 Atherosclerosis

9 Plaque

10 Lipoproteins

10 Lipoproteins and Atheroma

11 Risk Factors

11 Family History

11 Diabetes

11 Hypertension

11 Cholesterol

12 Smoking

12 Multiple Risk Factors

13 Diagnosis

14 Drug Treatment

14 Nitrates

14 Beta-blockers

15 Calcium antagonists

15 Other Medications

16 Surgery

16 Coronary Bypass Surgery

17 Angioplasty

18 Self-Help

20 Type-A Behaviour Pattern

21 Cardiac Rehab Program

22 Conclusion

23 Diagrams and Charts

26 Bibliography

INTRODUCTION

In today’s society, people are gaining medical knowledge at

quite a fast pace. Treatments, cures, and vaccines for various

diseases and disorders are being developed constantly, and yet,

coronary heart disease remains the number one killer in the

world.

The media today concentrates intensely on drug and alcohol

abuse, homicides, AIDS and so on. What a lot of people are not

realizing is that coronary heart disease actually accounts for

about 80% of all sudden deaths. In fact, the number of deaths

from heart disease approximately equals to the number of deaths

from cancer, accidents, chronic lung disease, pneumonia and

influenza, and others, COMBINED.

One of the symptoms of coronary heart disease is angina

pectoris. Unfortunately, a lot of people do not take it

seriously, and thus not realizing that it may lead to other

complications, and even death.

THE HUMAN HEART

In order to understand angina, one must know about our own

heart. The human heart is a powerful muscle in the body which is

worked the hardest. A double pump system, the heart consists of

two pumps side by side, which pump blood to all parts of the

body. Its steady beating maintains the flow of blood through the

body day and night, year after year, non-stop from birth until

death.

The heart is a hollow, muscular organ slightly bigger than a

person’s clenched fist. It is located in the centre of the chest,

under the breastbone above the sternum, but it is slanted

slightly to the left, giving people the impression that their

heart is on the left side of their chest.

The heart is divided into two halves, which are further

divided into four chambers: the left atrium and ventricle, and

the right atrium and ventricle. Each chamber on one side is

separated from the other by a valve, and it is the closure of

these valves that produce the “lubb-dubb” sound so familiar to

us. (see Fig. 1 – The Structure of the Heart)

Like any other organs in our body, the heart needs a supply

of blood and oxygen, and coronary arteries supply them. There are

two main coronary arteries, the left coronary artery, and the

right coronary artery. They branch off the main artery of the

body, the aorta. The right coronary artery circles the right side

and goes to the back of the heart. The left coronary artery

further divides into the left circumflex and the left anterior

descending artery. These two left arteries feed the front and the

left side of the heart. The division of the left coronary artery

is the reason why doctors usually refer to three main coronary

arteries. (Fig. 2 – Coronary Arteries)

SYMPTOMS OF CORONARY HEART DISEASE

There are three main symptoms of coronary heart disease:

Heart Attack, Sudden Death, and Angina.

Heart Attack

Heart attack occurs when a blood clot suddenly and

completely blocks a diseased coronary artery, resulting in the

death of the heart muscle cells supplied by that artery.

Coronary and Coronary Thrombosis2 are terms that can refer to a

heart attack. Another term, Acute myocardial infarction2, means

death of heart muscle due to an inadequate blood supply.

Sudden Death

Sudden death occurs due to cardiac arrest. Cardiac arrest

may be the first symptom of coronary artery disease and may occur

without any symptoms or warning signs. Other causes of sudden

deaths include drowning, suffocation, electrocution, drug

overdose, trauma (such as automobile accidents), and stroke.

Drowning, suffocation, and drug overdose usually cause

respiratory arrest which in turn cause cardiac arrest. Trauma may

cause sudden death by severe injury to the heart or brain, or by

severe blood loss. Stroke causes damage to the brain which can

cause respiratory arrest and/or cardiac arrest.

Angina

People with coronary artery disease, whether or not they

have had a heart attack, may experience intermittent chest pain,

pressure, or discomforts. This situation is known as angina

pectoris. It occurs when the narrowing of the coronary arteries

temporarily prevents an adequate supply of blood and oxygen to

meet the demands of working heart muscles.

ANGINA PECTORIS

Angina Pectoris (from angina meaning strangling, and

pectoris meaning breast) is commonly known simply as angina and

means pain in the chest. The term “angina” was first used during

a lecture in 1768 by Dr. William Heberden. The word was not

intended to indicate “pain,” but rather “strangling,” with a

secondary sensation of fear.

Victims suffering from angina may experience pressure,

discomfort, or a squeezing sensation in the centre of the chest

behind the breastbone. The pain may radiate to the arms, the

neck, even the upper back, and the pain may come and go. It

occurs when the heart is not receiving enough oxygen to meet an

increased demand.

Angina, as mentioned before, is only temporarily, and it

does not cause any permanent damage to the heart muscle. The

underlying coronary heart disease, however, continues to progress

unless actions are taken to prevent it from becoming worse.

Signs and Symptoms

Angina does not necessarily involve pain. The feeling varies

from individuals. In fact, some people described it as “chest

pressure,” “chest distress,” “heaviness,” “burning feeling,”

“constriction,” “tightness,” and many more. A person with angina

may feel discomforts that fit one or several of the following

descriptions:

- Mild, vague discomfort in the centre of the chest, which

may radiate to the left shoulder or arm

- Dull ache, pins and needles, heaviness or pains in the

arms, usually more severe in the left arm

- Pain that feels like severe indigestion

- Heaviness, tightness, fullness, dull ache, intense

pressure, a burning, vice-like, constriction, squeezing

sensation in the chest, throat or upper abdomen

- Extreme tiredness, exhaustion of a feeling of collapse

- Shortness of breath, choking sensation

- A sense of foreboding or impending death accompanying

chest discomfort

- Pains in the jaw, gums, teeth, throat or ear lobe

- Pains in the back or between the shoulder blades

Angina can be so severe that a person may feel frightened,

or so mild that it might be ignored. Angina attacks are usually

short, from one or two minutes to a maximum of about four to

five. It usually goes away with rest, within a couple of minutes,

or ten minutes at the most.

Different Forms of Angina

There are several known forms of angina. Brief pain that

comes on exertion and leave fairly quickly on rest is known as

stable angina. When angina pain occurs during rest, it is called

unstable angina. The symptoms are usually severe and the coronary

arteries are badly narrowed. If a person suffers from unstable

angina, there is a higher risk for that person to develop heart

attacks. The pain may come up to 20 times a day, and it can wake

a person up, especially after a disturbing dream.

Another type of angina is called atypical or variant angina.

In this type of angina, pain occurs only when a person is resting

or asleep rather than from exertion. It is thought to be the

result of coronary artery spasm, a sort of cramp that narrows the

arteries.

Causes of Angina

The main cause of angina is the narrowing of the coronary

arteries. In a normal person, the inner walls of the coronary

arteries are smooth and elastic, allowing them to constrict and

expand. This flexibility permits varying amounts of oxygenated

blood, appropriate to the demand at the time, to flow through the

coronary arteries. As a person grows older, fatty deposits will

accumulate on the artery walls, especially if the linings of the

arteries are damaged due to cigarette smoking or high blood

pressure.

As more and more fatty materials build up, they form plaques

which causes the arteries to narrow and thus restricting the flow

of blood. This process is known as atherosclerosis. However,

angina usually does not occur until about two-thirds of the

artery’s diameter is blocked. Besides atherosclerosis, there are

other heart conditions resulting in the starvation of oxygen of

the heart, which also causes angina.

The nerve factor – The arteries are supplied with nerves,

which allow them to be controlled directly by the brain,

especially the hypothalamus – an area at the centre of the brain

which regulates the emotions. The brain controls the expanding

and narrowing of the arteries when necessary. The pressures of

modern life: aggression, hostility, never-ending deadlines,

remorseless, competition, unrest, insecurity and so on, can

trigger this control mechanism.

When you become emotional, the chemicals that are released,

such as adrenaline, noradrenaline, and serotonin, can cause a

further constriction of the coronary arteries. The pituitary

gland, a small gland at the base of the brain, under the control

of the hypothalamus, can signal the adrenal glands to increase

the production of stress hormones such as cortisol and adrenaline

even further.

Coronary spasm – Sudden constrictions of the muscle layer in

an artery can cause platelets to stick together, temporarily

restricting the flow of flow. This is known as coronary spasm.

Platelets are minute particles in the blood, which play an

essential role both in the clotting process and in repairing any

damaged arterial walls. They tend to clump together more easily

when the blood is full of chemicals released during arousal, such

as cortisol and others.

Coronary spasm causes the platelets to stick together and to

the wall of the artery, while substances released by the

platelets as they stick together further constrict the blood

vessels. If the artery is already narrowed, this can have a

devastating effect as it drastically reduces the blood flow.

(Fig. 3 – Spasm in a coronary artery)

When people are very tense, they usually overbreathe or hold

their breath altogether. Shallow, irregular but rapid breathing

washes out carbon dioxide from the system and the blood will become

over-oxygenated. One might think that the more oxygen in the blood

the better, but overloaded blood actually does not give up oxygen

as easily, therefore the amount of oxygen available to the heart is

reduced. Carbon dioxide is present in the blood in the form of

carbonic acid, when there is a loss in carbonic acid, the blood

becomes more basic, or alkaline, which leads to spasm of blood

vessels, almost certainly in the brain but also in the heart.

ATHEROSCLEROSIS

The coronary arteries may be clogged with atherosclerotic

plaques, thus narrowing the diameter. Plaques are usually

collections of connection tissue, fats, and smooth muscle cells.

The plaque project into the lumen, the passageway of the artery,

and interfere with the flow of blood. In a normal artery, the

smooth muscle cells are in the middle layer of the arterial wall;

in atherosclerosis they migrate into the inner layer. The reason

behind their migration could hold the answers to explain the

existence of atherosclerosis. Two theories have been developed for

the cause of atherosclerosis.

The first theory was suggested by German pathologist Rudolf

Virchow over 100 years ago. He proposed that the passage of fatty

material into the arterial wall is the initial cause of

atherosclerosis. The fatty material, especially cholesterol, acts

as an irritant, and the arterial wall respond with an outpouring of

cells, creating atherosclerotic plaque.

The second theory was developed by Austrian pathologist Karl

von Rokitansky in 1852. He suggested that atherosclerotic plaques

are aftereffects of blood-clot organization (thrombosis). The clot

adheres to the intima and is gradually converted to a mass of

tissue, which evolves into a plaque.

There are evidences to support the latter theory. It has been

found that platelets and fibrin (a protein, the final product in

thrombosis) are often found in atherosclerotic plaques, also found

are cholesterol crystals and cells which are rich in lipid. The

evidence suggests that thrombosis may play a role in

atherosclerosis, and in the development of the more complicated

atherosclerotic plaque. Though thrombosis may be important in

initiating the plaque, an elevated blood lipid level may accelerate

arterial narrowing.

Plaque

Inside the plaque is a yellow, porridge-like substance,

consisting of blood lipids, cholesterol and triglycerides. These

lipids are found in the bloodstream, they combine with specific

proteins to form lipoproteins. All lipoprotein particles contain

cholesterol, triglycerides, phospholipids, and proteins, but the

proportion varies in different particles.

Lipoproteins

Lipoproteins all vary in size. The largest lipoproteins are

called Chylomicra, and consist mostly of triglycerides. The next in

size are the pre-beta-lipoproteins, then the beta lipoproteins. As

their size decreases, so do their concentration of triglycerides,

but the smaller they are, the more cholesterol they contain. Pre-

beta-lipoproteins are also known as low density lipoproteins (LDL),

and beta lipoproteins are also called very low density lipoproteins

(VLDL). They are most significant in the development of atheroma.

The smallest lipoprotein particles, the alpha lipoproteins, contain

a low concentration of cholesterol and triglycerides, but a high

level of proteins, and are also known as high density lipoproteins

(HDL). They are thought to be protective against the development of

atherosclerotic plaque. In fact, they are transported to the liver

rather than to the blood vessels.

Lipoproteins and Atheroma

The theory is that lipoproteins pass between the lining cells

of the arteries and some of them accumulate underneath. All except

the chylomicra, which are too big, have a chance to accumulate. The

protein in the lipoproteins are broken down by enzymes, leaving

behind the cholesterol and triglycerides. These fats are trapped

and set up a small inflammatory reaction. The alpha particles do

not react with the enzymes are returned to the circulation.

RISK FACTORS

There are several risk factors that contribute to the

development of atherosclerosis and angina: Family history,

Diabetes, Hypertension, Cholesterol, and Smoking.

Family History

We all carry approximately 50 genes that affect the function

and structure of the heart and blood vessels. Genetics can

determine one’s risk of having heart disease. There are many cases

today where heart disease runs in a family, for many generations.

Diabetes

Diabetics are at least twice as likely to develop angina than

nondiabetics, and the risk is higher in women than in men. Diabetes

causes metabolic injury to the lining of arteries, as a result, the

tiny blood vessels that nourish the walls of medium-size arteries

throughout the body, including the coronary arteries, become

defective. These microscopic vessels become blocked, impeding the

delivery of blood to the lining of the larger arteries, causing

them to deteriorate, and artherosclerosis results.

Hypertension

High blood pressure directly injures the artery lining by

several mechanisms. The increased pressure compresses the tiny

vessels that feed the artery wall, causing structural changes in

these tiny arteries. Microscopic fracture lines then develop in the

arterial wall. The cells lining the arteries are compressed and

injured, and can no longer act as an adequate barrier to

cholesterol and other substances collecting in the inner walls of

the blood vessels.

Cholesterol

Cholesterol has become one of the most important issues in the

last decade. Reducing cholesterol intake can directly decrease

one’s risk of developing heart disease, and people today are more

conscious of what they eat, and how much cholesterol their foods

contain.

Cholesterol causes atherosclerosis by progressively narrowing

the arteries and reduces blood flow. The building up of fatty

deposits actually begins at an early age, and the process

progresses slowly. By the time the person reaches middle-age, a

high cholesterol level can be expected.

Smoking

It has been proven that about the only thing smoking do is

shorten a person’s life. Despite all the warnings by the surgeon

general, people still manage to find an excuse to quit smoking.

Cigarette smoke contains carbon monoxide, radioactive

polonium, nicotine, arsenious oxide, benzopyrene, and levels of

radon and molybdenum that are TWENTY times the allowable limit for

ambient factory air. The two agents that have the most significant

effect on the cardiovascular system are carbon monoxide and

nicotine.

Nicotine has no direct effect on the heart or the blood

vessels, but it stimulates the nerves on these structures to cause

the secretion of adrenaline. The increase of adrenaline and

noradrenaline increases blood pressure and heart rate by about 10%

for an hour per cigarette. In simpler words, nicotine causes the

heart to beat more vigorously. Carbon monoxide, on the other hand,

poisons the normal transport systems of cell membranes lining the

coronary arteries. This protective lining breaks down, exposing the

undersurface to the ravages of the passing blood, with all its

clotting factors as well as cholesterol.

Multiple Risk Factors

The five major risk factors described above do more than just

add to one another. There is a virtual multiplication effect in

victims with more than one risk factor. (Chart: Risk Factors)

DIAGNOSIS

It is very important for patients to tell their doctors of the

symptoms as honestly and accurately as possible. The doctor will

need to know about other symptoms that may distinguish angina from

other conditions, such as esophagitis, pleurisy, costochondritis,

pericarditis, a broken rib, a pinched nerve, a ruptured aorta, a

lung tumour, gallstones, ulcers, pancreatitis, a collapsed lung or

just be nervous. Each of the above mentioned is capable of causing

chest pain.

A patient may take a physical examination, which includes

taking the pulse and blood pressure, listening to the heart and

lung with a stethoscope, and checking weight. Usually an

experienced cardiologist can distinguish it as a cardiac or

noncardiac situation within minutes.

There are also routine tests, such as urine and blood tests,

which can be used to determine body fat level. Blood test can also

tests for:

Anemia – where the level of haemogoblin is too low, and can

restrict the supply of blood to the heart.

Kidney function – levels of various salts, and waste products,

mainly urea and creatinine in the blood. Normally these levels

should be quite low.

There are other factors which can be tested such as salt

level, blood fat and sugar levels.

A chest x-ray provides the doctor with information about the

size of the heart. Like any other muscles in the body, if the heart

works too hard for a period of time, it develops, or enlarges.

An electrocardiogram (ECG) is the tracing of the electrical

activity of the heart. As the heart beats and relaxes, the signals

of the heart’s electrical activities are picked up and the pattern

is recorded. The pattern consists of a series of alternating

plateaus and sharp peaks. ECG can indicate if high blood pressure

has produced any strain on the heart. It can tell if the heart is

beating regularly or irregularly, fast or slow. It can also pick up

unnoticed heart attacks. A variation of the ECG is the

veterocardiogram (VCG). It performs exactly like the ECG except the

electrical activity is shown in the form of loops, or vectors,

which can be watched on a screen, printed on paper, or

photographed. What makes VCG superior to ECG is that VCG provides

a three-dimensional view of a single heart beat.

DRUG TREATMENT

Angina patients are usually prescribed at least one drug. Some

of the drugs prescribed improve blood flow, while others reduce the

strain on the heart. Commonly prescribed drugs are nitrates, beta-

blockers, and Calcium antagonists. It should be noted that drugs

for angina only relief the pain, it does nothing to correct the

underlying disorder.

Nitrates

Nitroglycerine, which is the basis of dynamite, relaxes the

smooth fibres of the blood vessels, allowing the arteries to

dilate. They have a tendency to produce flushing and headaches

because the arteries in the head and other parts of the body will

also dilate.

Glyceryl trinitrate is a short-acting drug in the form of

small tablets. It is taken under the tongue for maximum and rapid

absorption since that area is lined with capillaries. It usually

relieves the pain within a minute or two. One of the drawbacks of

trinitrates is that they can be exposed too long as they

deteriorate in sunlight. Trinitrates also come in the form of

ointment or “transdermal” sticky patch which can be applied to the

skin.

Dinitrates and mononitrates are used for the prevention of

angina attacks rather than as pain relievers. They are slower

acting than trinitrates, but they have a more prolonged effect.

They have to be taken regularly, usually three to four times a day.

Dinitrates are more common than trinitrates or tetranitrates.

Beta-blockers

Beta-blockers are used to prevent angina attacks. They reduce

the work of the heart by regulating the heart beat, as well as

blood pressure; the amount of oxygen required is thereby reduced.

These drugs can block the effects of the stress hormones adrenaline

and noradrenaline at sites called beta receptors in the heart and

blood vessels. These hormones increase both blood pressure and

heart rate. Other sites affected by these hormones are known as

alpha receptors.

There are side effects, however, for using beta-blockers.

Further reduction in the pumping action may drive to a heart

failure if the heart is strained by heart disease. Hands and feet

get cold due to the constriction of peripheral vessels. Beta-

blockers can sometimes pass into the brain fluids, and causes vivid

dreams, sleep disturbance, and depression. There is also a

possibility of developing skin rashes and dry eyes. Some beta-

blockers raise the level of blood cholesterol and triglycerides.

Calcium antagonists

These drugs help prevent angina by moping up calcium in the

artery walls. The arteries then become relaxed and dilated, so

reducing the resistance to blood flow, and the heart receives more

blood and oxygen. They also help the heart muscle to use the oxygen

and nutrients in the blood more efficiently. In larger dose they

also help lower the blood pressure. The drawback for calcium

antagonists is that they tend to cause dizziness and fluid

retention, resulting in swollen ankles.

Other Medications

There are new drugs being developed constantly. Pexid, for

example, is useful if other drugs fail in severe angina attacks.

However, it produces more side effects than others, such as pins

and needles and numbness in limbs, muscle weakness, and liver

damage. It may also precipitate diabetes, and damages to the

retina.

SURGERY

When medications or any other means of treatment are unable to

control the pain of angina attacks, surgery is considered. There

are two types of surgical operation available: Coronary Bypass and

Angioplasty. The bypass surgery is the more common, while

angioplasty is relatively new and is also a minor operation.

Surgery is only a “last resort” to provide relief and should not be

viewed as a permanent cure for the underlying disease, which can

only be controlled by changing one’s lifestyle.

Coronary Bypass Surgery

The bypass surgery involves extracting a vein from another

part of the body, usually the leg, and uses it to construct a

detour around the diseased coronary artery. This procedure restores

the blood flow to the heart muscle.

Although this may sound risky, the death rate is actually

below 3 per cent. This risk is higher, however, if the disease is

widespread and if the heart muscle is already weakened. If the

grafted artery becomes blocked, a heart attack may occur after the

operation.

The number of bypasses depends on the number of coronary

arteries affected. Coronary artery disease may affect one, two, or

all three arteries. If more than one artery is affected, then

several grafts will have to be carried out during the operation.

About 20 per cent of the patients considered for surgery have only

one diseased vessel. In 50 per cent of the patients, there are two

affected arteries, and in 30 per cent the disease strikes all three

arteries. These patients are known to be suffering from triple

vessel disease and require a triple-bypass. Triple vessel disease

and disease of the left main coronary artery before it divides into

two branches are the most serious conditions.

The operation itself incorporates making an incision down the

length of the breastbone in order to expose the heart. The patient

is connected to a heart-lung machine, which takes over the function

of the heart and lungs during the operation and also keeps the

patient alive. At the same time, a small incision is made on the

leg to remove a section of the vein.

Once the section of vein has been removed, it is attached to

the heart. One end of the vein is sewn to the aorta, while the

other end is sewn into the affected coronary artery just beyond the

diseased segment. The grafted vein now becomes the new artery

through which the blood can flow freely beyond the obstruction. The

original artery is thus bypassed. The whole operation requires

about four to five hours, and may be longer if there is more than

one bypass involved. After the operation, the patient is sent to

the Intensive Care Unit (ICU) for recovery.

The angina pain is usually relieved or controlled, partially

or completely, by the operation. However, the operation does not

cure the underlying disease, so the effects may begin to diminish

after a while, which may be anywhere from a few months to several

years. The only way patients can avoid this from happening is to

change their lifestyles.

Angioplasty

This operation is a relatively new procedure, and it is known

in full as transluminal balloon coronary angioplasty. It entails

“squashing” the atherosclerotic plaque with balloons. A very thin

balloon catheter is inserted into the artery in the arm or the leg

of a patient under general anaesthetic. The balloon catheter is

guided under x-ray just beyond the narrowed coronary artery. Once

there, the balloon is inflated with fluid and the fatty deposits

are squashed against the artery walls. The balloon is then deflated

and drawn out of the body.

This technique is a much simpler and more economical

alternative to the bypass surgery. The procedure itself requires

less time and the patient only remains in the hospital for a few

days afterward. Exactly how long the operation takes depends on

where and in how many places the artery is narrowed. It is most

suitable when the disease is limited to the left anterior

descending artery, but sometimes the plaques are simply too hard,

making them impossible to be squashed, in which case a bypass might

be necessary.

SELF-HELP

The only way patients can prevent the condition of their heart

from deteriorating any further is to change their lifestyles.

Although drugs and surgery exist, if the heart is exposed to

pressure continuously and it strains any further, there will come

one day when nothing works, and all that remain is a one-way ticket

to heaven.

The following are some advices on how people can change the

way they live, and enjoy a lifetime with a healthy heart once more.

Work

A person should limit the amount of exertions to the point

where angina might occur. This varies from person to person, some

people can do just as much work as they did before developing

angina, but only at a slower pace. Try to delegate more, reassess

your priorities, and learn to pace yourself. If the rate of work is

uncontrollable, think about changing the job.

Exercise

Everyone should exercise regularly to one’s limits. This may

sound contradictory that, on the one hand, you are told to limit

your exertion and, on the other, you are told to exercise. It is

actually better if one exercise regularly within his or her limits.

Exercises can be grouped into two categories: isotonic and

isometric. People suffering from angina should limit themselves to

only isotonic exercises. This means one group of muscle is relaxed

while another group is contracted. Examples of this type of

exercise include walking, swimming leisurely, and yoga; some harder

exercises are cycling and jogging.

Weight Loss

The more weight there is on the body, the more work the heart

has to do. Reducing unnecessary weight will reduce the amount of

strain on the heart, and likely lower blood pressure as well. One

can lose weight by simply eating less than their normal intake, but

keep in mind that the major goal is to cut down on fatty and sugar

foods, which are low in nutrients and high in calories.

Diet

What you eat can have a direct effect on the kind of condition

you are in. To stay fit and healthy, eat fewer animal fats, and

foods that are high in cholesterol. They include fatty meat, lard,

suet, butter, cream and hard cheese, eggs, prawns, offal and so on.

Also, the amount of salt intake should be reduced. Eat more food

containing a high amount of fibre, such as wholegrain cereal

products, pulses, wholemeal bread, as well as fresh fruits and

vegetables.

Alcohol, tea and coffee

Alcohol in moderation does no harm to the body, but it does

contain calories and may slow the weight loss progress. People can

drink as much mineral water, fruit juice and ordinary or herb tea

as they wish, but no more than two cups of coffee per day.

Cigarettes

It has been medically proven that cigarettes do the body no

good at all. It makes the heart beat faster, constricts the blood

vessels, and generally increases the amount of work the heart has

to do. The only right thing to do is to quit smoking, it will not

be easy, but it is worth the effort.

Stress

Stress can actually be classified as a major risk factor, and

it is one neglected by most people. Try to avoid those heated

arguments and emotional situations that increase blood pressure, as

well as stimulate the release of stress hormones. If they are

unavoidable, try to anticipate them and prevent the attack by

sucking an angina tablet beforehand.

Relaxation

Help your body to relax when feeling tense by sitting or lying

down quietly. Close your eyes, breathe slowly and deeply through

the nose, make each exhalation long, soft and steady. An adequate

amount of sleep each night is always important.

Sexual activity

It is true that sexual intercourse may bring on an angina

attack, but the chronic frustration of abstinence may cause more

tension. If intercourse precipitates angina, either suck on an

angina tablet a few minutes beforehand or let your partner assume

the more active role.

TYPE-A BEHAVIOUR PATTERN

There is a marked increase of coronary heart disease in most

industrialized societies in the twentieth century. This may have

resulted, in part, because these societies reward those who

performed more quickly, aggressively, and competitively.

Type-A individuals of both sexes were considered to have the

following characteristics:

(1) an intense, sustained drive to achieve self-

selected but often poorly defined goals.

(2) a profound inclination and eagerness to compete.

(3) a persistent desire for recognition and

advancement.

(4) a continuous involvement in multiple and diverse

functions subject to time restrictions.

(5) habitual propensity to accelerate the rate of

execution of most physical and mental functions.

(6) extraordinary mental and physical alertness.

(7) aggressive and hostile feelings.

The enhanced competitiveness of type-A persons leads to an

aggressive and ambitious achievement orientation, increased mental

and physical alertness, muscular tension, and an explosive and

rapid style of speech. A sense of time urgency leads to

restlessness, impatience, and acceleration of most activities. This

in turn may result in irritability and the enhanced potential for

type-A hostility and anger. Type-A individuals are thus at an

increased risk of developing coronary heart disease.

The type-A behaviour pattern is defined as an action-emotion

complex involving10:

(1) behavioural dispositions (e.g., ambitiousness,

aggressiveness, competitiveness, and impatience).

(2) specific behaviours (e.g., muscle tenseness,

alertness, rapid and emphatic speech stylistics,

and accelerated pace of most activities).

(3) emotional responses (e.g., irritation, hostility,

and anger).

Comparatively, type-A persons are more risky to develop

coronary heart disease than type-B individuals, whose manners and

behaviours are relaxed. The risk, however, is independent of the

risk factors. Not all physicians are convinced that type-A

behaviour pattern is a risk factor, and thousands of studies and

researches are currently being done by experts on this topic.

THE CARDIAC REHAB PROGRAM

This program at the Credit Valley Hospital is designed to help

patients with coronary artery disease lower their overall risk, and

to prevent any further attacks. It provides rehabilitation for

patients who are likely to have heart attacks, have had heart

attacks, or had a recent surgery.

Most patients come to this one-hour class two nights a week,

which takes place outside the physiotherapy department. The class

is ran by volunteers, and is usually supervised by a kinesiologist.

The patients come in a little before 6:00 pm, and have their blood

pressure taken. At six o’clock, volunteers will take the patients

through a fifteen-minute warm-up. After the warm-up, the patients

will go on with their exercise for half an hour. The patients can

choose from walking, rowing machines, stationary bicycles, and arm

ergometer, or a combination of two or more as their exercise.

Each patient is reassessed once a month, in order to keep

track of their progress. Volunteers will ask the patient being

reassessed a series of questions, which includes frequency of

exercise, type of exercise program, problems with exercise, etc.

About 6:30, when the patients are near the peak of their

exercise, the ones being reassessed will have to have their pulse

and blood pressure measured; to see if they have reached their

“target heart rate”, and to see if their blood pressure goes up

as expected.

At about 6:45, the patients end their exercise and cool-down

begins. Cool-down is in a way similar to warm-up, only this helps

the patients to relax their hearts, as well as their body after a

half-hour workout. After cool-down most patients have their blood

pressure taken again just to make sure nothing unusual occurs.

CONCLUSION

Angina pectoris is not a disease which affect a person’s

heart permanently, but to encounter angina pain means something

is wrong. The pain is the heart’s distress signal, a built-in

warning device indicating that the heart has reached its maximum

workload. Upon experiencing angina, precautions should be taken.

A person’s lifestyle plays a major role in determining the

chance of developing heart diseases. If people do not learn how

to prevent it themselves, coronary artery disease will remain as

the single biggest killer in the world, by far.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий