Смекни!
smekni.com

Рождение электробиологии (стр. 2 из 6)

Врачи электризовали и лекарства, и больных и писали о положительных результатах, Есть свидетельства, что воду в опытах, в результате которых открыли лейденскую банку, электризовали именно для того, чтобы проверить ее лечебное действие, Заметим, что С. Грей еще за 15 лет до того показал, что заряд распределяется по поверхности тела, а не проникает внутрь его, так что сама вода остается незаряженной» Тем не менее находилось немало людей, которые утверждали, что наэлектризованная вода хорошо лечит. Утверждалось, например, что парализованных больных надо для излечения заряжать положительно, а психически больных – отрицательно.

Появилось множество людей, которые утверждали, что они обладают особенно сильным электрическим действием и поэтому могут излечивать больных, Подвергать себя электризации стало до того модным, что тот, кто не мог проникнуть в лаборатории ученых «электризовался» у ярмарочных шарлатанов.

Таким образом, то, что написано выше об интересе к науке, не следует воспринимать как безоблачно радужную картину полного триумфа разума и просвещения. Суеверия, мистика – тени научного знания, к сожалению, часто сопровождающие научные открытия, И эти тени тем гуще, чем ярче свет, т.е. чем необычнее, новее явление. Одним из показателей уровня культуры человека и образованности общества является умение отличать «свет от тени».

Теперь мы можем попытаться объяснить, почему на столе у Гальвани оказалась электрическая машина. В то время это был распространенный прибор для различных научных исследований, а иногда просто для развлечений. Существовали специальные мастерские, где каждый мог заказать себе такую машину f и ее старался иметь любой уважающий себя ученый. Кроме того, как мы уже говорили, электризацию связывали с лечебным воздействием, и поэтому врач Гальвани мог использовать машину и для медицинских опытов.

Однако каким бы правдоподобным ни казалось это последнее предположение, оно, вероятно, неверно. Гальвани был серьезным ученым и едва ли держал у себя электрическую машину только ради моды» Она стояла на лабораторном столе, где ставились опыты с лягушками, и нет никаких данных, что Гальвани занимался электризацией людей. Он, как уже говорилось занимался физиологией нервов и мышц. И чтобы правильно ответить на наш вопрос, нам придется продолжить анализ. Посмотрим теперь, в каком состоянии были физиологические знания во времена Гальвани.

Физиология в эпоху Гальвани

В этот период физический подход и физические методы исследования уже показали свою объяснительную силу в ряде областей биологии, связанных с более развитыми разделами физики, и поэтому развитие науки об электричестве тоже способствовало появлению новых надежд. Можно прямо проследить, как целый ряд открытий в области биологии был прямо связан с развитием соответствующих разделов физики.

Так, У. Гарвей, создатель теории кровообращения, смог понять роль сердца, так как насосы были уже изобретены, но догадаться, что делают легкие, не смог: ведь кислород еще не был известен. Поэтому Гарвей продолжал, следуя Аристотелю, считать, что в сердце кровь нагревается, а в легких охлаждается.

Гипотеза Аристотеля о сердечном огне, просуществовавшая почти 20 веков, была опровергнута с помощью физического эксперимента: в 1680 г., ученик Галилея Дж. Борелли измерил температуру, введя термометр в сердце животного; она оказалась примерно равной общей температуре тела. Нам этот опыт кажется простым, даже банальным. А ведь термометр появился всего лет за двадцать до опыта Борелли, значит, был для него такой же и даже большей новинкой, чем сейчас персональный компьютер. Вот и мы чуть было не написали, вслед за многочисленными популярными рассказами, что Борелли установил, будто бы температура в сердце оленя равна 40 С, но вовремя сообразили, что никаких градусов Цельсия на термометре в то время не могло быть, потому что А. Цельсий еще не родился.

По существу работы Боррелли были первым случаем широкого применения достижений физики к изучению живого*). Так в книге «О движении животных» он рассматривает действие мышц на кости скелета с точки зрения теории рычага, правильно объясняет движение ног и корпуса человека при вставании из положения сидя или лежа необходимостью такого перенесения центра масс, при котором он оказался бы под площадью опоры; верно вычисляет силы, развиваемые мышцами рук и ног, и т.д.

Открытие атмосферного давления дало возможность Борелли верно объяснить механику дыхательного акта: при увеличении объема грудной клетки воздух входит в легкие за счет атмосферного давления. Однако смысл процесса дыхания остается для Борелли столь же неясным, как и для Гарвея, и это неудивительно: только через сто лет после выхода книги Борелли Лавуазье выяснит роль кислорода для дыхания.

Это еще раз подтверждает, что в тех вопросах физиологии, где почва еще не была подготовлена успехами физики и химии, продолжали господствовать взгляды древних авторов и порождаемые ими разнообразные малообоснованные предположения.

Все сказанное полностью относится и к физиологии мышц и нервов – области, которую изучал Гальвани. Роль мышц в движении была известна, но что касается причин их сокращения, то тут было еще очень мало фактов и очень много довольно фантастических представлений.

Почти до середины XVIII века большинство ученых считало, что причиной сокращения мышц и вообще всех движений является душа. Считалось, что сама по себе никакая мышца не обладает способностью сокращаться. 8 та способность возникает только в тот момент, когда в нее втекает «животный дух».

С другой стороны существовали механистические объяснения сокращения мышц. Например, Р, Декарт считал, что по нерву в мышцу поступает нечто вроде легкого газа, который раздувает мышцу, и она сокращается). Борелли думал, что сокращение мышцы похоже на сокращение мокрой веревки; по его мнению, из нерва в мышцу попадает «нервный сок», и она «намокает». Однако все эти теории были сходны в одном: сама мышца пассивна, в нее должно войти из нерва нечто, что и вызовет сокращение.

В середине XVIII века мышечное сокращение стало предметом экспериментального изучения. Швейцарский ученый А. Галлер в ряде опытов показал, что скелетные мышцы, мышцы желудка, сердечная мышца отвечают на прямое механическое, химическое или электрическое раздражение, когда соответствующая мышца находится вне организма и отделена от нервов. Наблюдая за развитием эмбрионов, Галлер показал, что сердце начинает биться в тот период, когда в него еще не вросли никакие нервы.

В 1763 г. один из последователей Галлера Ф. Фонтана) сделал важное открытие. Он показал, что сердце может либо ответить, – либо не ответить на одно и то же раздражение в зависимости от того, через какой промежуток времени после предыдущего сокращения наносится раздражение. Оказывается, после предыдущего сокращения сердечная мышца должна какое-то время отдохнуть, чтобы стать способной к ответу на новое раздражение.

Таким образом, в середине XVIII века складывается представление о возбудимости разных мышц, как о присущем им свойстве отвечать сокращением на непосредственное раздражение. Работы Фонтана показали, что возбудимость мышцы – некоторая переменная величина, которая может меняться во времени и которую хорошо было бы научиться как то измерять.

Что касается нервных волокон, то их роль в принципе была правильно определена еще античными учеными, а именно был сделан вывод о том, что через нервы передаются какие-то влияния – от мозга к мышцам и от органов чувств к мозгу. Однако в XVIII веке этого было уже недостаточно. Хотелось понять, какова же природа сигналов, передающихся по нервам. Сторонники учения о «жизненной силе», естественно, считали, что по нервам передается «животный дух», который и вызывает сокращение мышц. И опять-таки, естественно, в середине XVIII века, в период увлечения электричеством самые разные ученые все чаще предполагали, что по нерву распространяется «электрический флюид».

Тут нам придется на минутку вернуться к истории физики. Выше мы говорили об экспериментальных открытиях века: лейденской банке, природе молнии и т.д.; теперь скажем несколько слов о теоретических представлениях.

Электричество в это время рассматривали как «электрический флюид», как особую электрическую жидкость. Эта гипотеза возникла после того, как Грей открыл, что электричество может «перетекать» от одного тела к другому, если их соединить металлической проволокой или другими проводниками. Эта гипотеза, конечно, была навеяна представлениями, господствовавшими тогда в других разделах физики. Свойствами невесомой жидкости – эфира – объясняли волновое распространение света; теплоту тоже считали невесомой жидкостью. Гипотеза о сущности электричества была подвергнута экспериментальной проверке. Наэлектризованные тела тщательно взвешивали и не могли обнаружить прибавки в весе. Таким образом, представления о невесомости электрического заряда было результатом не только умозрительных рассуждений, но и следствием недостаточной точности измерений.

Когда выяснилось, что электрический заряд нельзя измерять взвешиванием, физики начали изобретать принципиально новые приборы. Эти приборы – разного рода электроскопы и электрометры – появляются в середине XVIII века. В 1746 г. появляется электрометр Элликота. в 1747 г. – электроскоп Нолле, того самого аббата, который демонстрировал королю в Версале разряд лейденской банки. Один из первых электрометров был сконструирован Рихманом,