Смекни!
smekni.com

Элементарные частицы в космических лучах (стр. 2 из 4)

Например, при аннигилляции электрона и позитрона они превращаются в два, три или несколько

- квантов. Один
- квант излучиться не может, так как это несовместимо с законами сохранения. При аннигиляции тяжелых частиц и античастиц возникают не столько
-кванты, сколько другие легкие частицы, например
- мезоны при аннигиляции протона и антипротона. Наряду с аннигиляцией при достаточно большой энергии возможен и обратный процесс рождения пары частица-античастица.

Значительные усилия прилагаются в настоящее время в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Наблюдаемые большие различия между этими взаимодействиями считаются обусловленными нарушением симметрии при доступных в настоящее время энергиях. Их единая природа может проявиться только при энергии частиц во встречных пучках порядка 1014 ГэВ. При этом кварки и лептоны окажутся однотипными объектами и станут возможными их взаимные превращения. Следствием таких представлений явилось предсказание нестабильности свободного протона со средним временем жизни 1030 -1032 лет, что существенно превышает возраст Вселенной. Эта теория известна под названием Великого объединения. Теория, которая сумеет включить и гравитацию, уже заранее получила название Суперобъединение.

Теории Великого объединения актуальны лишь при столь высоких энергиях, какие могли существовать только на самых ранних этапах существования Вселенной. Таким образом, физика элементарных частиц, прорываясь в область высоких энергий, соединилась с современной космологией — теорией эволюции Вселенной. Появилась новая наука — космомикрофизика.

3. Космомикрофизика

Космомикрофизика — закономерный результат внутреннего развития и физики элементарных частиц, и космологии. В появлении этой науки соединяются две тенденции — переход к теории элементарных частиц, нетривиальные проявления которой раскрываются только в процессах при сверхвысоких энергиях, и возникновение представлений о новых формах материи, необходимых для самосогласованного описания совокупности наблюдаемых явлений во Вселенной. Отчетливое осознание взаимосвязанности проблем выбора правильного фундамента структуры микромира и фундаментального обоснования структуры макромира вывело взаимосвязь представлений микро- и макромира на новый уровень, на котором эти проблемы сливаются в новом качестве. В космомикрофизике структура микромира обретает полнозвучие гармонии небесных сфер.

Связь представлений о микро- и макромире прослеживается на всех этапах их развития. Долгое время суждения о мироздании и о его первоначалах, составляя единое целое, оставались чисто умозрительными. Источником таких суждений были наблюдения и умозаключения на их основе.

Оптические приборы вооружили глаз наблюдателя. Обращение в глубь явлений с помощью микроскопа и расширение взгляда на мир с помощью телескопа произошли на основе одного и того же физического принципа. И, наверное, не случайно у истоков и физического эксперимента, и оптической астрономии стоит один и тот же ученый — Галилео Галилей. С этого момента оптическая астрономия и экспериментальная физика развивались самостоятельно. Отчетливо выявлялась их специфика.

Астрономии было дано лишь пристально вглядываться во внешние проявления астрономических объектов, недра которых закрыты для глаз, наблюдать результат процессов, причины и ход которых недоступны контролю. В физическом эксперименте можно дробить объекты исследования, докапываясь до их сути, можно менять начальные условия и контролировать ход процессов. Поэтому не удивительно, что во взаимоотношении астрономии и физики развитие физики выходило долгое время на передний план, определяя и прогресс астрономии, и степень осмысления астрономических результатов.

Так, изученная физикой структура атомов и спектров их излучения вооружила астрономию методами спектрального анализа. Физические законы взаимодействия вещества и излучения легли в основу понимания закономерностей излучения звезд, а развитие ядерной физики открыло астрономам источники энергии этого излучения. Открытие гелия по линиям излучения Солнца, существование уровня возбуждения в углероде, теоретически предсказанное для объяснения термоядерного горения гелия в звездах, и еще немного другого — можно по пальцам перечесть ответные астрофизические знаки благодарности физике. Астрофизика, казалось, была обречена лишь на освоение прочно подтвержденных в лабораториях физических законов, на роль своеобразного полигона, преломляющего известные эффекты их действия в причудливых сочетаниях неземных условий, подлежащих изучению.

Однако в 20-е годы XX века мысленному взору Фридмана предстала изменчивая суть Вселенной, ее нестационарность, подтвержденная затем в наблюдениях Хаббла. На месте вечной и неизменной Вселенной открылась картина ее расширения за конечное время из сверхплотной фазы в современное состояние.

Тем самым астрономия предоставила физике естественный ускоритель, масштабы и значение которого начинают в полной мере осознаваться физикой микромира только сейчас.

Создание теории нестационарной Вселенной почти на десятилетие опередило революционный шаг, сделанный в 30-е годы в представлениях об элементарных частицах.

Выход из мучительных проблем сохранения энергии и момента в бета-распаде, "азотной" катастрофы и строения ядра физика микромира нашла в отказе от вечных и неизменных частиц, в переходе к представлениям о возможности их рождения и уничтожения в процессах их превращений. Другой урок, полученный в 30-е годы, состоял в том, что число элементарных частиц в Природе оказалось значительно больше, чем этого требует простая и экономная картина строения вещества.

Революции в физике элементарных частиц и в науке о Вселенной в целом, космологии произошли в одно десятилетие, и хотя они охватывали совершенно не пересекающиеся в то время области знания, близость по времени этих двух событий далеко не случайна. Осознание факта нестационарности Вселенной психологически

Подготовило и смену представлений о свойствах микрочастиц: во Вселенной, за конечное время радикально меняющей свое состояние, вечным и неизменным частицам нет места. Отсюда и смена взгляда на основания физики — законы сохранения и взаимодействия элементарных частиц.

Рис. 1. Уничтожение начального электрона 1 и рождение конечного электрона 2 сопровождается рождением или поглощением электромагнитного гамма-кванта.

Так, сохранение электрического заряда оказывалось не простым следствием сохранения неуничтожимых электрически заряженных частиц, а нетривиальным правилом, определяющим строгий локальный баланс уничтожения и рождения заряженных частиц. Менялось и представление о заряде как мере электромагнитного взаимодействия от неотъемлемой характеристики вечной и неизменной частицы к характеристике закона превращения, при котором уничтожение начальной и рождение конечной заряженных частиц сопровождались рождением или уничтожением электромагнитного кванта (рис. 1).

Эта смена представлений содержала богатейший простор для обобщений. Точно так же можно было описать и законы ядерных превращений сильного' и слабого взаимодействий. В таких превращениях уничтожение и рождение частиц сопровождаются рождением и поглощением квантов поля сильного или слабого взаимодействий.

Логический шаг к единообразному описанию всех фундаментальных взаимодействий мог бы быть сделан еще: в 30-е годы, но для его осуществления потребовалось целое пятидесятилетие. Трудность извилистого пути к единообразной картине всех взаимодействий была связана с необходимостью совместить сходство описания с различием в наблюдаемых свойствах этих взаимодействий. Нужно было объяснить, почему слабое взаимодействие происходит только на малых расстояниям, превращение каких именно частиц вызывает процессы сильного взаимодействия и с какими зарядами взаимодействуют кванты его поля.

Ответы на эти и другие вопросы составили современную теорию электромагнитного, слабого и сильного взаимодействий, основанную на симметрии превращении частиц и объясняющую наблюдаемые различия их свойств нарушением этой симметрии. Расширяя симметрию, можно было перейти от единообразия описания разных взаимодействий к их фундаментальному единству. Но такой шаг, поначалу оправданный и близким экспериментальным подтверждением в поисках распада протона, и жесткой, соответствующей экспериментальным данным, связью зарядов слабого и электромагнитного взаимодействий, означал скачок теории к области сверхвысоких энергий, недоступной прямому экспериментальному изучению.

С этим шагом теория теряла непосредственную опору в экспериментальной физике высоких энергий. От привычной прямой экспериментальной проверки своих предсказаний теория должна была перейти к анализу сочетания косвенных проявлений своих фундаментальных построений. Миру физики высоких энергий, обретавшему свое основание в собственных экспериментальных возможностях, открылись для широкого поиска все допустимые косвенные способы исследования гипотетических явлений, прямое экспериментальное изучение которых не представляется возможным. В контексте этой ситуации взаимосвязь физики микромира с космологией приобретает особое значение, становится необходимой опорой развития теории микромира.