Смекни!
smekni.com

Ядро и организмы (стр. 2 из 2)

4. Химический состав клетки. Вода. Неорганические составные части

Живая клетка характеризуется активной химической деятельностью. В ней одновременно протекают тысячи химических реакций. Вещества из внешней среды беспрерывным потоком поступают в клетку, и беспрерывно же отработанные продукты уносятся из клетки в окружающую среду. В одних участках клетки вещества подвергаются глубокому распаду, в других участках из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения.

Химическая деятельность клетки является основой ее жизни, главным условием ее развития и функционирования.

Химический состав клетки. У разных клеток обнаруживается сходство не только в строении, но и в химическом составе. Это указывает на общность происхождения клеток.

Данные об элементарном составе клеток представлены на таблице.

Кислород 65 – 75 Магний 0,02 – 0,03
Углерод 15 – 18 Натрий 0,02 – 0,03
Водород 8 – 10 Кальций 0,04 – 2,00
Азот 1,5 – 3,0 Железо 0,01 – 0,015
Калий 0,15 – 0,4 Цинк 0,0003
Сера 0,15 – 0,2 Медь 0,0002
Фосфор 0,20 – 1,00 Йод 0,0001
Хлор 0,05 – 0,10 Фтор 0,0001

Как видно из таблицы, в состав клеток входит много различных элементов. Из 104 элементов периодической системы Менделеева в клетках обнаружено около 60. Следует подчеркнуть, что живая клетка состоит из тех же элементов, что и неживые объекты. Это указывает на связь и единство живой и неживой природы.

Элементы, входящие в состав клетки, удобно разделить на три группы. В первую группу входят 4 элемента: кислород, углерод, водород и азот. Содержание этих элементов в клетке наиболее велико. На их долю приходится почти 98% всего состава клетки. Следующую группу образуют элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Таких элементов 8: калий, сера, фосфор, хлор, магний, натрий, кальций и железо. В сумме они составляют примерно 1,9%. К третьей группе относятся все остальные элементы. Они содержатся в клетке в исключительно малых количествах (менее 0,01%). Их называют, поэтому микроэлементами.

На атомном уровне различий между химическим составом органического и неорганического мира нет. Различия обнаруживаются на более высоком уровне организации – на молекулярном. Конечно, не все соединения, содержащиеся в клетке, специфичны для живой природы. Такие вещества, как вода и соли, распространены и вне живого. Но в организмах и продуктах их жизнедеятельности уже давно обнаружено присутствие большого числа углеродсодержащих соединений, характерных только для организмов. Эти соединения и называются, поэтому органическими. Содержание основных химических соединений, обнаруженных в клетках, представлено на таблице.

Вода 70 – 85 Нуклеиновые кислоты 1 – 2
Белки 10 – 20 АТФ и другие низкомолекулярные органические вещества 0,1 – 0,5
Жиры 1 – 5
Углеводы 0,2 – 2,0 Неорганические вещества 1,0 – 1,5

Вода. Из таблицы видно, – что среди веществ клетки на первом месте стоит вода. Содержание воды в разных клетках колеблется; обычно она составляет около 80% их массы. Высокое содержание воды в клетке – необходимое условие ее жизненной активности. Чем выше содержание воды в клетке, тем интенсивнее ее жизнедеятельность. Так, в быстрорастущих клетках эмбрионов человека и животных содержится около 95% воды. В клетках взрослого организма воды до 80%, а к старости снижается до 60%. Высокоактивные клетки мозга содержат около 85% воды, а в малоактивных клетках жировой ткани содержание воды не превышает 40%. Смерть в результате лишения воды наступает раньше, чем от отсутствия пищи. Потеря более 20% массы за счет воды для человека смертельна.

Роль воды в клетке велика и многообразна. Вода определяет многие физические свойства клеток – их объем, упругость. Весьма существенна роль воды как растворителя. Многие вещества поступают в клетки в водном растворе, и в водном же растворе отработанные продукты выводятся из клеток. Большинство химических реакций, протекающих в клетке, может идти только в водном растворе. Далее вода непосредственно участвует во многих химических реакциях клетки. Так, например, расщепление белков, жиров, углеводов и других веществ происходит в результате химического взаимодействия этих веществ с водой. Наконец, вода играет существенную роль в распределении и отдаче тепла в клетке.

Биологическая роль воды определяется особенностями ее внутримолекулярной структуры, полярностью ее молекул, способностью образовывать водородные связи. Этими свойствами объясняется, в частности, высокая удельная теплоемкость воды, что, имеет значение для регуляции тепла в клетке. При охлаждении или повышении температуры внешней среды тепло поглощаемся или выделяется благодаря разрыву или новообразованию водородных связей между молекулами воды. Таким образом, колебания температуры внутри клетки, несмотря на резкие ее изменения во внешней среде, смягчаются. Особенностями внутримолекулярной структуры воды объясняются и ее выдающиеся 'свойства как растворителя. В воде растворяются очень многие вещества: соли, различные органические вещества – белки, углеводы и т.д. Вещество растворяется в том случае, если энергия притяжения молекул воды к молекулам вещества оказывается больше, чем энергия притяжения между молекулами воды. Вещества, у которых энергия притяжения к воде высокая и, следовательно, растворимость особенно большая, называются гидрофильными («гидро» – вода, «филео» – люблю, греч.). Существует большая группа веществ, трудно или практически почти совсем нерастворимых в воде. К. ним относится большинство неполярных веществ: жиры, липоиды, каучук, парафин и др. Энергия притяжения молекул воды к неполярным молекулам оказывается меньшей, чем энергия водородных связей. Вещества, у которых энергия притяжения к воде особенно слабая и растворимость соответственно очень низкая, называются гидрофобными, («гидро» – вода, «фобос» – страх, греч.).

Нерастворимость гидрофобных веществ в воде используется клеткой: в состав клеточных мембран входят неполярные вещества (липоиды), ограничивающие переход воды из наружной среды в клетку и обратно, а также из одних участков клетки в другие.

Неорганические составные части клетки. Из химических элементов, входящих в состав клеток, часть участвует в построении органических соединений, другая часть находится в виде неорганических веществ. Из углерода, водорода и кислорода состоят углеводы и жиры. Во все белки и нуклеиновые кислоты, кроме этих элементов, входит азот. Многие белки содержат серу. Фосфор – составная часть нуклеиновых кислот, железо входит в состав гемоглобина, магний содержится в хлорофилле, йод участвует в построении молекулы тироксина (гормона щитовидной железы), кобальт входит в состав витамина B12 и т.д.

Из неорганических веществ клетки большая часть находится в виде солей. Наиболее важны из катионов: К+, Na+, Ca2+ и Mg2+, из анионов: НРО24-, Н2РО4 – С1-, НСО3~.

Содержание катионов и анионов в клетке и в среде ее обитания, как правило, резко различно. Так, внутри клетки довольно высокая концентрация калия и очень малая натрия. Напротив, в среде, окружающей клетку, – в плазме крови, в морской воде – мало калия и довольно высокая концентрация натрия. В мышечных клетках калия в 30 раз больше, чем в крови, натрия же в 10 раз меньше, чем в крови. Пока клетка жива, это различие в концентрации К+ и Na+ между клеткой и средой стойко удерживается. После смерти клетки содержание К+ и Na+ в клетке и среде быстро выравнивается. Наличие в клетке и в окружающей среде неорганических ионов имеет важное значение для нормального функционирования клетки. При отсутствии ионов клетка утрачивает возбудимость и погибает.

Минеральные вещества содержатся в клетке не только в растворенном, но и в твердом состоянии; в частности, прочность и твердость костной ткани, а также раковин моллюсков обязаны присутствию в них нерастворимого фосфорнокислого кальция.

Если в среде, окружающей клетку, содержатся в недостаточном количестве элементы Р, Fe, Mg, микроэлементы I, Co, Zn и др., то нарушается образование важных соединений: нуклеиновых кислот, гемоглобина, хлорофилла, тироксина, витамина B12 и т.д. – ив результате возникают различные заболевания, задержка роста и развития.


Список литературы

1. Азимов А. Краткая история биологии. М., 1997.

2. Кемп П., Армс К. Введение в биологию. М., 2000.

3. Либберт Э. Общая биология. М., 1978 Льоцци М. История физики. М., 2001.

4. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М., 1999.

5. Небел Б. Наука об окружающей среде. Как устроен мир. М., 1993.