Смекни!
smekni.com

История, панорама современного естествознания и тенденции его развития (стр. 5 из 12)

Если отдельные зачаточные элементы сферической тригонометрии были известны еще древним грекам (например, Птолемей пользовался понятием "хорда угла"), то в систематическом виде тригонометрия создана арабскими математиками. Уже в работах аль-Баттани содержится значительная часть тригонометрии, включая таблицы значений котангенса для каждого градуса.

Историческая заслуга средневековых арабских математиков состояла и в том, что они начали глубокие исследования по основаниям геометрии. Первые попытки доказательств постулатов описаны в сочинениях О. Хайяма.

Достижения в физике. Из разделов механики наибольшее развитие получила статика, чему способствовали условия экономической жизни средневекового Востока. Интенсивное денежное обращение и торговля, как внутренняя, так и международная, требовали постоянного совершенствовании методов взвешивания, а также системы мер и весов. Это определило развитие учения о взвешивании и теоретической основы взвешивания - науки о равновесии, создание многочисленных конструкций, различных видов весов.

Арабские ученые широко использовали понятие удельного веса, совершенствуя методы определения удельных весов различных металлов и минералов. Этим вопросом занимались аль-Бируни, О. Хайям, ать-Хазини (ХII в.). Для определения удельного веса применялся закон Архимеда, грузы взвешивались не только в воздухе, но и воде. Полученные результаты были исключительно точны. Например, удельный вес ртути был определен аль-Хазини в 13,56 г/см3 (по современным данным - 13,557), удельный вес серебра 10,150 г/см3 (по современным данным - 10,49), золота - 19,05 г/см3 (современные данные - 19,27), меди 8,80 г/см3 (современные данные -8,91) и т.д. Столь точные данные позволяли решать ряд практических задач: отличать чистый металл и драгоценные камни от подделок, устанавливать истинную ценность монет, обнаруживать различие удельного веса воды при разных температурах и др.

Развитие кинематики было связано с потребностями астрономии в строгих методах для описания движения небесных тел. В этом направлении и развивается аппарат кинематико - геометрического моделирования движения небесных тел на основе "Альмагеста" К. Птолемея. Кроме того, в ряде работ изучалась кинематика "земных" движений. В частности, понятие движения привлекается для непосредственного доказательства геометрических положений (Ибн Корра Сабит, Насирэтдин ат-Туси), механические движения используются для объяснения оптических явлений (Ибн аль-Хай-Сам), изучается параллелограмм движений и т.п. Одно из направлений средневековой арабской кинематики - разработки инфинитезимальных методов (т.е. рассмотрение бесконечных процессов, непрерывности, предельных переходов и др.).

Динамика развивалась на основе комментирования и осмысления сочинений Аристотеля. Средневековыми арабскими учёными обсуждались проблемы существования пустоты и возможности движения в пустоте, характер движения в сопротивляющейся среде, механизм передачи движения, свободное падение тел, движение тел, брошенных под углом к горизонту.

В эпоху позднего средневековья значительное развитие получила динамическая "теория импетуса", которая была мостом, соединившим динамику Аристотеля с динамикой Галилея.

Кроме того, "теория импетуса" способствовала развитию и уточнению понятия силы. Старое, античное и средневековое, понятие силы благодаря "теории импетуса" в дальнейшем развитии физики раздвоилось на два понятия. Первое - то, что И. Ньютон называл "силой" ( ma), понимая под силой воздействие на тело, внешнее по отношению к движению этого тела. Второе - то, что Р. Декарт называл количеством движения, т.е. факторы процесса движения (mv), связанные с самим движущимся телом.

Всё это постепенно готовило возникновение динамики Галилея.

Астрономия. Существенный вклад внесен арабскими учёными и в астрономию. Они усовершенствовали технику астрономических измерений, значительно дополнили и уточнили данные о движении небесных тел. Один из выдающихся астрономов-наблюдателей аз-Зеркали (Арзахель) из Кордовы, которого считали лучшим наблюдателем XI в., составил так называемые Толедские планетные таблицы (1080). Они оказали значительное влияние на развитие тригонометрии в Западной Европе.

Вершиной в области наблюдательной астрономии стала деятельность Улугбека, который был любимым внуком создателя огромной империи Тимура. Движимый страстью к науке, Улугбек построил в Самарканде по тем временам самую большую в мире астрономическую обсерваторию, имевшую гигантский двойной квадрант и много других астрономических инструментов (азимутальный круг, астролябии, трикветры, армиллярные сферы и др.). В обсерватории был создан труд "Новые астрономические таблицы", который содержал изложение теоретических основ астрономии и каталог положения 1018 звезд.

В теоретической астрономии основное внимание уделялось уточнению кинематико-геометрических моделей "Альмагеста", устранению противоречий в теории Птолемея (в том числе с помощью более совершенной тригонометрии) и поиску нептолемеевских методов моделирования движения небесных тел.

Алхимия в средневековой культуре. В средневековой алхимии (расцвет пришёлся на XIII-XV вв.) выделялись две тенденции. Первая -мистифицированная алхимия, ориентированная на химические превращения (в частности ртути в золото) и в конечном счёте на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею "философского камня" - гипотетического вещества, ускорявшего "созревание" золота в недрах земли. Это вещество заодно трактовалось и как эликсир жизни, дающий бессмертие.

Вторая тенденция была больше ориентирована на конкурентную практическую технохимию. В этой области достижения алхимии несомненны. К ним относят способы получения серной, соляной, азотной кислот, "царской водки", селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

Среди алхимиков наряду с шарлатанами и фальсификаторами, было немало искренне убеждённых в реальности всеобщей взаимопревращаемости веществ, в том числе и крупных мыслителей, таких как Раймунд Луллий, Арнольдо да Вилланова, Альберт Великий, Фома Аквинский, Бонавентура и др. Почти невозможно в средневековье отделить друг от друга деятельность, связанную с химией, и деятельность, связанную с алхимией. Они переплетались самым тесным образом.

Средневековое мировоззрение постепенно начинает ограничивать и сдерживать развитие науки. Поэтому необходима была смена мировоззрения, которая произошла в эпоху Возрождения.


Глава 5. Революция в мировоззрении в эпоху Возрождения

Эпоха Возрождения сделала огромный вклад в развитие научной мысли благодаря новому пониманию места и роли человека в объективном мире. Человек стал пониматься отныне не как природное существо, а как творец самого себя, что и выделяет его из всех прочих живых существ. Человек становится на место Бога: он сам свой собственный творец, он владыка природы. Эта мысль была чужда языческой Греции, так как для нее природа это то, что существует само по себе, что никем не создано. Более того, для античной науки небесные тела - нечто принципиально отличное от земного мира, это божественные существа, и создать их с помощью орудий и небесного материала было бы равносильно созданию богов -кощунственная для античности мысль.

Возрождение делает следующий шаг - человек чувствует себя божественным. Поэтому в эту эпоху столь символическое значение получает фигура художника - в ней наиболее адекватно выражается самая глубокая ренессансная идея - идея человека-творца, человека, вставшего на место Бога.

В эпоху Возрождения изменилась ситуация в сфере познания живого. Здесь особое место принадлежит XVI в. В истории биологии этот период выделяется как начало глубокого перелома в способах познания живого. Ренессансный гуманизм, пересмотрев представление о месте человека в природе, возвысил роль человека в мире.

Значительные изменения происходят в способе биологического познания - вырабатываются стандарты, критерии и нормы исследования органического мира. На смену стихийности, спекулятивным домыслам, фантазиям и суевериям постепенно приходит установка на объективное, доказательное, эмпирически обоснованное знание. Благодаря коллективным усилиям ученых многих европейских стран такая установка обеспечила постепенное накопление колоссального фактического материала. Значительную роль в этом процессе сыграли Великие географические открытия, эпоха которых раздвинула мировоззренческий горизонт европейцев - они узнали множество новых биологических, геологических, географических и других явлений. Фауна и флора вновь открытых стран и континентов не только значительно расширили эмпирический базис биологии, но и поставили вопрос о его систематизации.

Важной вехой в развитии анатомии стало творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения "Альмагеста", восхищение математическим гением Птолемеем, сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли.